Understanding and characterizing how people interact in information-seeking conversations will be a crucial component in developing effective conversational search systems. In this paper, we introduce a new dataset designed for this purpose and use it to analyze information-seeking conversations by user intent distribution, co-occurrence, and flow patterns. The MSDialog dataset is a labeled conversation dataset of question answering (QA) interactions between information seekers and providers from an online forum on Microsoft products. The dataset contains more than 2,000 multi-turn QA dialogs with 10,000 utterances that are annotated with user intents on the utterance level. Annotations were done using crowdsourcing. With MSDialog, we find some highly recurring patterns in user intent during an information-seeking process. They could be useful for designing conversational search systems. We will make our dataset freely available to encourage exploration of information-seeking conversation models.
more »
« less
Feedstack: Layering Structured Representations Over Unstructured Feedback to Scaffold Human–AI Conversation
Not AvailableMany conversational user interfaces facilitate linear conversations with turn-based dialogue, similar to face-to-face conversations between people. However, digital conversations can afford more than simple back-and-forth; they can be layered with interaction techniques and structured representations that scaffold exploration, reflection, and shared understanding between users and AI systems. We introduce Feedstack, a speculative interface that augments feedback conversations with layered affordances for organizing, navigating, and externalizing feedback. These layered structures serve as a shared representation of the conversation that can surface user intent and reveal underlying design principles. This work represents an early exploration of this vision using a research-through-design approach. We describe system features and design rationale, and present insights from two formative (n=8, n=8) studies to examine how novice designers engage with these layered supports. Rather than presenting a conclusive evaluation, we reflect on Feedstack as a design probe that opens up new directions for conversational feedback systems.
more »
« less
- Award ID(s):
- 2150152
- PAR ID:
- 10663298
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conversational systems typically focus on functional tasks such as scheduling appointments or creating todo lists. Instead we design and evaluate SlugBot (SB), one of 8 semifinalists in the 2018 AlexaPrize, whose goal is to support casual open-domain social inter-action. This novel application requires both broad topic coverage and engaging interactive skills. We developed a new technical approach to meet this demanding situation by crowd-sourcing novel content and introducing playful conversational strategies based on storytelling and games. We collected over 10,000 conversations during August 2018 as part of the Alexa Prize competition. We also conducted an in-lab follow-up qualitative evaluation. Over-all users found SB moderately engaging; conversations averaged 3.6 minutes and involved 26 user turns. However, users reacted very differently to different conversation subtypes. Storytelling and games were evaluated positively; these were seen as entertaining with predictable interactive structure. They also led users to impute personality and intelligence to SB. In contrast, search and general Chit-Chat induced coverage problems; here users found it hard to infer what topics SB could understand, with these conversations seen as being too system-driven. Theoretical and design implications suggest a move away from conversational systems that simply provide factual information. Future systems should be designed to have their own opinions with personal stories to share, and SB provides an example of how we might achieve this.more » « less
-
null (Ed.)The notion of face refers to the public self-image of an individual that emerges both from the individual’s own actions as well as from the interaction with others. Modeling face and understanding its state changes throughout a conversation is critical to the study of maintenance of basic human needs in and through interaction. Grounded in the politeness theory of Brown and Levinson (1978), we propose a generalized framework for modeling face acts in persuasion conversations, resulting in a reliable coding manual, an annotated corpus, and computational models. The framework reveals insights about differences in face act utilization between asymmetric roles in persuasion conversations. Using computational models, we are able to successfully identify face acts as well as predict a key conversational outcome (e.g. donation success). Finally, we model a latent representation of the conversational state to analyze the impact of predicted face acts on the probability of a positive conversational outcome and observe several correlations that corroborate previous findings.more » « less
-
As social robots become increasingly prevalent in day-to-day environments, they will participate in conversations and appropriately manage the information shared with them. However, little is known about how robots might appropriately discern the sensitivity of information, which has major implications for human-robot trust. As a first step to address a part of this issue, we designed a privacy controller, CONFIDANT, for conversational social robots, capable of using contextual metadata (e.g., sentiment, relationships, topic) from conversations to model privacy boundaries. Afterwards, we conducted two crowdsourced user studies. The first study (n = 174) focused on whether a variety of human-human interaction scenarios were perceived as either private/sensitive or non-private/non-sensitive. The findings from our first study were used to generate association rules. Our second study (n = 95) evaluated the effectiveness and accuracy of the privacy controller in human-robot interaction scenarios by comparing a robot that used our privacy controller against a baseline robot with no privacy controls. Our results demonstrate that the robot with the privacy controller outperforms the robot without the privacy controller in privacy-awareness, trustworthiness, and social-awareness. We conclude that the integration of privacy controllers in authentic human-robot conversations can allow for more trustworthy robots. This initial privacy controller will serve as a foundation for more complex solutions.more » « less
-
Recognizing the challenges bilingual children face in school readiness and the potential of bilingual dialogic shared reading in improving language and literacy, this study investigates the use of a bilingual conversational agent (CA) to enhance shared reading experiences in home environments. While current CAs hold promise in fostering young children's learning, they do not typically consider the linguistic and cultural needs of bilingual children and rarely involve parents intentionally. To this end, we developed a bilingual CA, embedded within ebooks, to support children's language learning and parent engagement for Latine Spanish-English bilingual families. A week-long home-based study with 15 families indicated that the bilingual CA elicited a high level of bilingual verbal engagement from children, thereby promoting their vocabulary acquisition. It also stimulated meaningful conversations among parents and children. This study provides design implications for developing CAs for bilingual children and parents.more » « less
An official website of the United States government

