skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Žitković, Gordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. We construct an abstract framework in which the dynamic programming principle (DPP) can be readily proven. It encompasses a broad range of common stochastic control problems in the weak formulation, and deals with problems in the “martingale formulation” with particular ease. We give two illustrations; first, we establish the DPP for general controlled diffusions and show that their value functions are viscosity solutions of the associated Hamilton–Jacobi–Bellman equations under minimal conditions. After that, we show how to treat singular control on the example of the classical monotone-follower problem. 
    more » « less
  3. In the framework of an incomplete financial market where the stock price dynamics are modeled by a continuous semimartingale (not necessarily Markovian), an explicit second-order expansion formula for the power investor’s value function—seen as a function of the underlying market price of risk process—is provided. This allows us to provide first-order approximations of the optimal primal and dual controls. Two specific calibrated numerical examples illustrating the accuracy of the method are also given. 
    more » « less