Abstract In this paper, we construct the utility‐based optimal hedging strategy for a European‐type option in the Almgren‐Chriss model with temporary price impact. The main mathematical challenge of this work stems from the degeneracy of the second order terms and the quadratic growth of the first‐order terms in the associated Hamilton‐Jacobi‐Bellman equation, which makes it difficult to establish sufficient regularity of the value function needed to construct the optimal strategy in a feedback form. By combining the analytic and probabilistic tools for describing the value function and the optimal strategy, we establish the feedback representation of the latter. We use this representation to derive an explicit asymptotic expansion of the utility indifference price of the option, which allows us to quantify the price impact in options' market via the price impact coefficient in the underlying market.
more »
« less
An expansion in the model space in the context of utility maximization
In the framework of an incomplete financial market where the stock price dynamics are modeled by a continuous semimartingale (not necessarily Markovian), an explicit second-order expansion formula for the power investor’s value function—seen as a function of the underlying market price of risk process—is provided. This allows us to provide first-order approximations of the optimal primal and dual controls. Two specific calibrated numerical examples illustrating the accuracy of the method are also given.
more »
« less
- Award ID(s):
- 1600307
- PAR ID:
- 10049458
- Date Published:
- Journal Name:
- Finance and Stochastics
- ISSN:
- 0949-2984
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The intermittent nature of renewable energy generation implies that renewable producers rely on non-renewable producers to ensure the aggregate power delivered meets the promised quality of service. Therefore, the intermittent nature of renewable energy generation affects the committed power and market price of energy. We consider an electricity market where renewable and non-renewable generators bid by proposing their asking price per unit of energy to an independent system operator (ISO). The ISO solves a dispatch optimization problem to minimize the cost of purchased energy on behalf of the consumers. We incorporate the notion of net-load variance using the Conditional Value-at-Risk (CVAR) measure in the dispatch optimization problem to ensure that the generators are able to meet the load within a desired confidence level. We analytically derive the market clearing price of energy and dispatched powers as a function of CVAR and show that a higher penetration of renewable energies may increase the market clearing price of energy. Finally, we present descriptive simulations to illustrate the impact of renewable energy penetration on the market price of energy.more » « less
-
Abstract We develop a new market‐making model, from the ground up, which is tailored toward high‐frequency trading under a limit order book (LOB), based on the well‐known classification of order types in market microstructure. Our flexible framework allows arbitrary order volume, price jump, and bid‐ask spread distributions as well as the use of market orders. It also honors the consistency of price movements upon arrivals of different order types. For example, it is apparent that prices should never go down on buy market orders. In addition, it respects the price‐time priority of LOB. In contrast to the approach of regular control on diffusion as in the classical Avellaneda and Stoikov (Quantitative Finance, 8, 217, 2008) market‐making framework, we exploit the techniques of optimal switching and impulse control on marked point processes, which have proven to be very effective in modeling the order book features. The Hamilton‐Jacobi‐Bellman quasi‐variational inequality (HJBQVI) associated with the control problem can be solved numerically via finite‐difference method. We illustrate our optimal trading strategy with a full numerical analysis, calibrated to the order book statistics of a popular exchanged‐traded fund (ETF). Our simulation shows that the profit of market‐making can be severely overstated under LOBs with inconsistent price movements.more » « less
-
We study the allocation of divisible goods to competing agents via a market mechanism, focusing on agents with Leontief utilities. The majority of the economics and mechanism design literature has focused on \emph{linear} prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria for linear prices are known to be exactly the maximum Nash welfare allocations. \emph{Price curves} allow the cost of a good to be any (increasing) function of the quantity purchased. We show that price curve equilibria are not limited to maximum Nash welfare allocations with two main results. First, we show that an allocation can be supported by strictly increasing price curves if and only if it is \emph{group-domination-free}. A similarly characterization holds for weakly increasing price curves. We use this to show that given any allocation, we can compute strictly (or weakly) increasing price curves that support it (or show that none exist) in polynomial time. These results involve a connection to the \emph{agent-order matrix} of an allocation, which may have other applications. Second, we use duality to show that in the bandwidth allocation setting, any allocation maximizing a CES welfare function can be supported by price curves.more » « less
-
We present an agent-based model of manipulating prices in financial markets through spoofing: submitting spurious orders to mislead traders who learn from the order book. Our model captures a complex market environment for a single security, whose common value is given by a dynamic fundamental time series. Agents trade through a limit-order book, based on their private values and noisy observations of the fundamental. We consider background agents following two types of trading strategies: the non-spoofable zero intelligence (ZI) that ignores the order book and the manipulable heuristic belief learning (HBL) that exploits the order book to predict price outcomes. We conduct empirical game-theoretic analysis upon simulated agent payoffs across parametrically different environments and measure the effect of spoofing on market performance in approximate strategic equilibria. We demonstrate that HBL traders can benefit price discovery and social welfare, but their existence in equilibrium renders a market vulnerable to manipulation: simple spoofing strategies can effectively mislead traders, distort prices and reduce total surplus. Based on this model, we propose to mitigate spoofing from two aspects: (1) mechanism design to disincentivize manipulation; and (2) trading strategy variations to improve the robustness of learning from market information. We evaluate the proposed approaches, taking into account potential strategic responses of agents, and characterize the conditions under which these approaches may deter manipulation and benefit market welfare. Our model provides a way to quantify the effect of spoofing on trading behavior and market efficiency, and thus it can help to evaluate the effectiveness of various market designs and trading strategies in mitigating an important form of market manipulation.more » « less
An official website of the United States government

