skip to main content


Search for: All records

Creators/Authors contains: "Abboud, Amir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gortz, Inge Li ; Farach-Colton, Martin ; Puglisi, Simon J. ; Herman, Grzegorz (Ed.)
    Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH. 
    more » « less
  2. We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost k-cycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or even linear-time algorithm for detecting a 4-cycle in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all k≥ 4, unless we can detect a triangle in √n-degree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms. 
    more » « less
  3. null (Ed.)
    The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter. 
    more » « less