skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Abdelraouf, Amr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we examine the problem of the Dilemma Zone (DZ) in depth, weaving together the various influences that span the environment, the ego-vehicle, and ultimately the characteristics of the driver. Driver behavior in dilemma zone situations is crucial, and more research is urgently needed in this area. The journey through various modeling approaches and data acquisition techniques sheds new light on driver behavior within the dilemma zone context. Our thorough examination of the current research landscape has revealed that several significant areas remain overlooked. As well as the dynamic impact of vehicles, vehicle interactions, and a strong tendency to over-rely on infrastructure information, there are also concerns about the lack of comprehensive evaluation tools. However, we do not see these gaps as stumbling blocks, but rather as steppingstones for future research opportunities. A more focused study of cooperative solutions is required considering the potential of personalized modeling, the untapped power of machine learning techniques, and the importance of personalized modeling. It is our hope that by embracing innovative approaches that can capture and simulate personalized behavioral data using “everything-in-the-loop” simulations, future research endeavors will be guided. To effectively mitigate the DZ problem, we also point out the research gaps and opportunities for further research in the DZ. 
    more » « less
    Free, publicly-accessible full text available February 26, 2025
  2. Despite numerous studies on trajectory prediction, existing approaches often fail to adequately capture the multifaceted and individual nature of driving behavior. In recognition of this gap and based on DenseTNT, an end-to-end and goal-based trajectory prediction method, our study developed a new version of DenseTNT that incorporates personalized nodes within the graph neural network in VectorNet as context encoder. Throughout the neural network computations, these nodes represent individual driver labels, allowing a more granular understanding of diverse driving behaviors to be gained. Based on comparative analysis, our model has a 11.4% reduction in minADE when compared to baseline models that do not have personalized labels. 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  3. Advanced Driver Assistance Systems (ADAS) are increasingly important in improving driving safety and comfort, with Adaptive Cruise Control (ACC) being one of the most widely used. However, pre-defined ACC settings may not always align with driver's preferences and habits, leading to discomfort and potential safety issues. Personalized ACC (P-ACC) has been proposed to address this problem, but most existing research uses historical driving data to imitate behaviors that conform to driver preferences, neglecting real-time driver feedback. To bridge this gap, we propose a cloud-vehicle collaborative P-ACC framework that incorporates driver feedback adaptation in real time. The framework is divided into offline and online parts. The offline component records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. In the online component, driver feedback is used to update the driving gap preference in real time. The model is then retrained on the cloud with driver's takeover trajectories, achieving incremental learning to better match driver's preference. Human-in-the-loop (HuiL) simulation experiments demonstrate that our proposed method significantly reduces driver intervention in automatic control systems by up to 62.8%. By incorporating real-time driver feedback, our approach enhances the comfort and safety of P-ACC, providing a personalized and adaptable driving experience. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Adaptive Cruise Control (ACC) has become increasingly popular in modern vehicles, providing enhanced driving safety, comfort, and fuel efficiency. However, predefined ACC settings may not always align with a driver's preferences, leading to discomfort and possible safety hazards. To address this issue, Personalized ACC (P-ACC) has been studied by scholars. However, existing research mostly relies on historical driving data to imitate driver styles, which ignores real-time feedback from the driver. To overcome this limitation, we propose a cloud-vehicle collaborative P-ACC framework, which integrates real-time driver feedback adaptation. This framework consists of offline and online modules. The offline module records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. The online module utilizes the driver's real-time feedback to update the driving gap preference in real-time using Gaussian process regression (GPR). By retraining the model on the cloud with the driver's takeover trajectories, our approach achieves incremental learning to better match the driver's preference. In human-in-the-loop (HuiL) simulation experiments, the proposed framework results in a significant reduction of driver intervention in automatic control systems, up to 70.9%. 
    more » « less
    Free, publicly-accessible full text available September 24, 2024