skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 11, 2024

Title: Personalized Trajectory Prediction for Driving Behavior Modeling in Ramp-Merging Scenarios
Despite numerous studies on trajectory prediction, existing approaches often fail to adequately capture the multifaceted and individual nature of driving behavior. In recognition of this gap and based on DenseTNT, an end-to-end and goal-based trajectory prediction method, our study developed a new version of DenseTNT that incorporates personalized nodes within the graph neural network in VectorNet as context encoder. Throughout the neural network computations, these nodes represent individual driver labels, allowing a more granular understanding of diverse driving behaviors to be gained. Based on comparative analysis, our model has a 11.4% reduction in minADE when compared to baseline models that do not have personalized labels.  more » « less
Award ID(s):
2152258
NSF-PAR ID:
10510619
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-9574-7
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Location:
Laguna Hills, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Network embedding aims at transferring node proximity in networks into distributed vectors, which can be leveraged in various downstream applications. Recent research has shown that nodes in a network can often be organized in latent hierarchical structures, but without a particular underlying taxonomy, the learned node embedding is less useful nor interpretable. In this work, we aim to improve network embedding by modeling the conditional node proximity in networks indicated by node labels residing in real taxonomies. In the meantime, we also aim to model the hierarchical label proximity in the given taxonomies, which is too coarse by solely looking at the hierarchical topologies. To this end, we propose TAXOGAN to co-embed network nodes and hierarchical labels, through a hierarchical network generation process. Particularly, TAXOGAN models the child labels and network nodes of each parent label in an individual embedding space while learning to transfer network proximity among the spaces of hierarchical labels through stacked network generators and embedding encoders. To enable robust and efficient model inference, we further develop a hierarchical adversarial training process. Comprehensive experiments and case studies on four real-world datasets of networks with hierarchical labels demonstrate the utility of TAXOGAN in improving network embedding on traditional tasks of node classification and link prediction, as well as novel tasks like conditional proximity search and fine-grained taxonomy layout. 
    more » « less
  2. Understanding mechanisms driving link formation in dynamic social networks is a long-standing problem that has implications to understanding social structure as well as link prediction and recommendation. Social networks exhibit a high degree of transitivity, which explains the successes of common neighbor-based methods for link prediction. In this paper, we examine mechanisms behind link formation from the perspective of an ego node. We introduce the notion of personalized degree for each neighbor node of the ego, which is the number of other neighbors a particular neighbor is connected to. From empirical analyses on four on-line social network datasets, we find that neighbors with higher personalized degree are more likely to lead to new link formations when they serve as common neighbors with other nodes, both in undirected and directed settings. This is complementary to the finding of Adamic and Adar that neighbor nodes with higher (global) degree are less likely to lead to new link formations. Furthermore, on directed networks, we find that personalized out-degree has a stronger effect on link formation than personalized in-degree, whereas global in-degree has a stronger effect than global out-degree. We validate our empirical findings through several link recommendation experiments and observe that incorporating both personalized and global degree into link recommendation greatly improves accuracy. 
    more » « less
  3. Flood mapping on Earth imagery is crucial for disaster management, but its efficacy is hampered by the lack of high-quality training labels. Given high-resolution Earth imagery with coarse and noisy training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the true high-resolution labels while training neural network parameters. Traditional methods are largely based on specific physical properties and thus fall short of capturing the rich domain constraints expressed by symbolic logic. Neural-symbolic models can capture rich domain knowledge, but existing methods do not address the unique spatial challenges inherent in flood mapping on high-resolution imagery. To fill this gap, we propose a spatial-logic-aware weakly supervised learning framework. Our framework integrates symbolic spatial logic inference into probabilistic learning in a weakly supervised setting. To reduce the time costs of logic inference on vast high-resolution pixels, we propose a multi-resolution spatial reasoning algorithm to infer true labels while training neural network parameters. Evaluations of real-world flood datasets show that our model outperforms several baselines in prediction accuracy. The code is available at https://github.com/spatialdatasciencegroup/SLWSL.

     
    more » « less
  4. We built and compared several machine learning models to predict future self-reported wellbeing labels (of mood, health, and stress) for next day and for up to 7 days in the future, using multi-modal data. The data are from surveys, wearables, mobile phones and weather information collected in a study from college students, each providing daily data for 30 or 90 days. We compared the performance of multiple models, including personalized multi-task models and deep learning models. The best personalized multi-task linear model showed mean absolute errors of 12.8, 11.9, and 13.7 on a continuous-100 pt scale for estimating next days mood, health, and stress value, while the best multi-task neural network model, applied to 3-way high/med/low classification of the wellbeing values showed F1 scores of 0.71, 0.74, and 0.66 on mood, health, and stress metrics, respectively. We found that features related to weather, and morning academic activities are strongly associated with wellbeing labels. We further found greater prediction accuracy among participants with the least fluctuations in their wellbeing labels. 
    more » « less
  5. Connected and automated vehicles (CAVs) are sup- posed to share the road with human-driven vehicles (HDVs) in a foreseeable future. Therefore, considering the mixed traffic envi- ronment is more pragmatic, as the well-planned operation of CAVs may be interrupted by HDVs. In the circumstance that human behaviors have significant impacts, CAVs need to under- stand HDV behaviors to make safe actions. In this study, we develop a driver digital twin (DDT) for the online prediction of personalized lane-change behavior, allowing CAVs to predict surrounding vehicles’ behaviors with the help of the digital twin technology. DDT is deployed on a vehicle-edge–cloud architec- ture, where the cloud server models the driver behavior for each HDV based on the historical naturalistic driving data, while the edge server processes the real-time data from each driver with his/her digital twin on the cloud to predict the personalized lane- change maneuver. The proposed system is first evaluated on a human-in-the-loop co-simulation platform, and then in a field implementation with three passenger vehicles driving along an on/off ramp segment connecting to the edge server and cloud through the 4G/LTE cellular network. The lane-change intention can be recognized in 6 s on average before the vehicle crosses the lane separation line, and the Mean Euclidean Distance between the predicted trajectory and GPS ground truth is 1.03 m within a 4-s prediction window. Compared to the general model, using a personalized model can improve prediction accuracy by 27.8%. The demonstration video of the proposed system can be watched at https://youtu.be/5cbsabgIOdM. 
    more » « less