skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Abebe, Rediet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Poverty and economic hardship are understood to be highly complex and dynamic phenomena. Due to the multi-faceted nature of welfare, assistance programs targeted at alleviating hardship can face challenges, as they often rely on simpler welfare measurements, such as income or wealth, that fail to capture to full complexity of each family's state. Here, we explore one important dimension – susceptibility to income shocks. We introduce a model of welfare that incorporates income, wealth, and income shocks and analyze this model to show that it can vary, at times substantially, from measures of welfare that only use income or wealth. We then study the algorithmic problem of optimally allocating subsidies in the presence of income shocks. We consider two well-studied objectives: the first aims to minimize the expected number of agents that fall below a given welfare threshold (a min-sum objective) and the second aims to minimize the likelihood that the most vulnerable agent falls below this threshold (a min-max objective). We present optimal and near-optimal algorithms for various general settings. We close with a discussion on future directions on allocating societal resources and ethical implications of related approaches. 
    more » « less
  2. We revisit the well-studied problem of designing mechanisms for one-sided matching markets, where a set of n agents needs to be matched to a set of n heterogeneous items. Each agent i has a value vij for each item j, and these values are private information that the agents may misreport if doing so leads to a preferred outcome. Ensuring that the agents have no incentive to misreport requires a careful design of the matching mechanism, and mechanisms proposed in the literature mitigate this issue by eliciting only the ordinal preferences of the agents, i.e., their ranking of the items from most to least preferred. However, the efficiency guarantees of these mechanisms are based only on weak measures that are oblivious to the underlying values. In this paper we achieve stronger performance guarantees by introducing a mechanism that truthfully elicits the full cardinal preferences of the agents, i.e., all of the vij values. We evaluate the performance of this mechanism using the much more demanding Nash bargaining solution as a benchmark, and we prove that our mechanism significantly outperforms all ordinal mechanisms (even non-truthful ones). To prove our approximation bounds, we also study the population monotonicity of the Nash bargaining solution in the context of matching markets, providing both upper and lower bounds which are of independent interest. 
    more » « less
  3. Networks provide a powerful formalism for modeling complex sys- tems, by representing the underlying set of pairwise interactions. But much of the structure within these systems involves interac- tions that take place among more than two nodes at once — for example, communication within a group rather than person-to- person, collaboration among a team rather than a pair of co-authors, or biological interaction between a set of molecules rather than just two. We refer to these type of simultaneous interactions on sets of more than two nodes as higher-order interactions; they are ubiquitous, but the empirical study of them has lacked a general framework for evaluating higher-order models. Here we introduce such a framework, based on link prediction, a fundamental prob- lem in network analysis. The traditional link prediction problem seeks to predict the appearance of new links in a network, and here we adapt it to predict which (larger) sets of elements will have fu- ture interactions. We study the temporal evolution of 19 datasets from a variety of domains, and use our higher-order formulation of link prediction to assess the types of structural features that are most predictive of new multi-way interactions. Among our results, we find that different domains vary considerably in their distri- bution of higher-order structural parameters, and that the higher- order link prediction problem exhibits some fundamental differ- ences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the ap- pearance of new interactions. 
    more » « less