skip to main content


Search for: All records

Creators/Authors contains: "Abouhussein, Ahmed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Optimal fish array hydrodynamics in accelerating phalanx schools are investigated through a computational framework which combines high fidelity Computational Fluid Dynamics (CFD) simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant to a phalanx fish school, such as midline kinematics, separation distance and phase synchronization, are investigated in light of efficient propulsion during an accelerating fish motion. Results show that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school for thunniform biologically-inspired swimmers is shown to be around 2L(whereLis the swimmer’s total length). Furthermore, separation distance is shown to have a stronger effect,ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization.

     
    more » « less
  2. Surrogate based optimization (SBO) methods have gained popularity in the field of constrained optimization of expensive black-box functions. However, constraint handling methods do not usually guarantee strictly feasible candidates during optimization. This can become an issue in applied engineering problems where design variables must remain feasible for simulations to not fail. We propose a simple constraint-handling method for computationally inexpensive constraint functions which guarantees strictly feasible candidates when using a surrogate-based optimizer. We compare our method to other SBO algorithms and an EA on five analytical test functions, and an applied fully-resolved Computational Fluid Dynamics (CFD) problem concerned with optimization of an undulatory swimming of a fish-like body, and show that the proposed algorithm shows favorable results while guaranteeing feasible candidates. 
    more » « less