skip to main content

Search for: All records

Creators/Authors contains: "Addy, Kelly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Riparian zones are key ecotones that buffer aquatic ecosystems through removal of nitrogen (N) via processes such as denitrification. However, how dams alter riparian N cycling and buffering capacity is poorly understood. Here, we hypothesized that elevated groundwater and anoxia due to the backup of stream water above milldams may enhance denitrification. We assessed denitrification rates (using denitrification enzyme assays) and potential controlling factors in riparian sediments at various depths upstream and downstream of two relict U.S. mid‐Atlantic milldams. Denitrification was not significantly different between upstream and downstream, although was greater per river km upstream considering deeper and wider geometries. Further, denitrification typically occurred in hydrologically variable shallow sediments where nitrate‐N and organic matter were most concentrated. At depths below 1 m, both denitrification and nitrate‐N decreased while ammonium‐N concentrations substantially increased, indicating suppression of ammonium consumption or dissimilatory nitrate reduction to ammonium. These results suggest that denitrification occurs where dynamic groundwater levels result in higher rates of nitrification and mineralization, while another N process that produces ammonium‐N competes with denitrification for limited nitrate‐N at deeper, more stagnant/poorly mixed depths. Ultimately, while it is unclear whether relict milldams are sources of N, limited denitrification rates indicate that they are not always effective sinks; thus, milldam removal—especially accompanied by removal of ammonium‐N rich legacy sediments—may improve riparian N buffering.

    more » « less
  2. Abstract

    Milldams and their legacies have significantly influenced fluvial processes and geomorphology. However, less is known about their effects on riparian zone hydrology, biogeochemistry, and water quality. Here, we discuss the potential effects of existing and breached milldams on riparian nitrogen (N) processing through multiple competing hypotheses and observations from complementary studies. Competing hypotheses characterize riparian zone processes that remove (sink) or release (source) N. Elevated groundwater levels and reducing soil conditions upstream of milldams suggest that riparian zones above dams could be hotspots for N removal via denitrification and plant N uptake. On the other hand, dam removals and subsequent drops in stream and riparian groundwater levels result in drained, oxic soils which could increase soil nitrification and decrease riparian plant uptake due to groundwater bypassing the root zone. Whether dam removals would result in a net increase or decrease of N in riparian groundwaters is unknown and needs to be investigated. While nitrification, denitrification, and plant N uptake have typically received the most attention in riparian studies, other N cycle processes such as dissimilatory nitrate reduction to ammonium (DNRA) need to be considered. We also propose a novel concept of riparian discontinuum, which highlights the hydrologic and biogeochemical discontinuities introduced in riparian zones by anthropogenic structures such as milldams. Understanding and quantifying how milldams and similar structures influence the net source or sink behavior of riparian zones is urgently needed for guiding watershed management practices and for informed decision making with regard to dam removals.

    more » « less
  3. Abstract

    The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant.

    more » « less
  4. Abstract

    Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates andδ15N values were also determined. Denitrification rates and soilδ15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management.

    more » « less