skip to main content


Search for: All records

Creators/Authors contains: "Adjeroh, Donald A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 3, 2025
  2. Abstract

    The lncATLAS database quantifies the relative cytoplasmic versus nuclear abundance of long non-coding RNAs (lncRNAs) observed in 15 human cell lines. The literature describes several machine learning models trained and evaluated on these and similar datasets. These reports showed moderate performance, e.g. 72–74% accuracy, on test subsets of the data withheld from training. In all these reports, the datasets were filtered to include genes with extreme values while excluding genes with values in the middle range and the filters were applied prior to partitioning the data into training and testing subsets. Using several models and lncATLAS data, we show that this ‘middle exclusion’ protocol boosts performance metrics without boosting model performance on unfiltered test data. We show that various models achieve only about 60% accuracy when evaluated on unfiltered lncRNA data. We suggest that the problem of predicting lncRNA subcellular localization from nucleotide sequences is more challenging than currently perceived. We provide a basic model and evaluation procedure as a benchmark for future studies of this problem.

     
    more » « less
  3. Free, publicly-accessible full text available September 1, 2025
  4. Free, publicly-accessible full text available August 1, 2025
  5. Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt’s lymphoma and multiple myeloma (MM). In this work, we defined transcriptional signatures corresponding to CB-6644 treatment in MM cells and determined underlying epigenetic changes in terms of chromatin accessibility. CB-6644 upregulated biological processes related to interferon response and downregulated those linked to cell proliferation in MM cells. Transcriptional regulator inference identified E2Fs as regulators for downregulated genes and MED1 and MYC as regulators for upregulated genes. CB-6644-induced changes in chromatin accessibility occurred mostly in non-promoter regions. Footprinting analysis identified transcription factors implied in modulating chromatin accessibility in response to CB-6644 treatment, including ATF4/CEBP and IRF4. Lastly, integrative analysis of transcription responses to various chemical compounds of the molecular signature genes from public gene expression data identified CB-5083, a p97 inhibitor, as a synergistic candidate with CB-6644 in MM cells, but experimental validation refuted this hypothesis.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  6. Adjeroh, Donald A ; Zhou, Xiaobo ; Derevyanchuk, Ekaterina G ; Shkurat, Tatiana P ; Martinez, Ivan ; Lipovich, Leonard (Ed.)

    This is a mini-review capturing the views and opinions of selected participants at the 2021 IEEE BIBM 3rd Annual LncRNA Workshop, held in Dubai, UAE. The views and opinions are expressed on five broad themes related to problems in lncRNA, namely, challenges in the computational analysis of lncRNAs, lncRNAs and cancer, lncRNAs in sports, lncRNAs and COVID-19, and lncRNAs in human brain activity.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  7. Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin’s effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools—transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer’s, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  8. Huang, Sanwen (Ed.)
    Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015–2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31205460) and a cytochrome P450 enzyme (Chr08:45351919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025