skip to main content

Search for: All records

Creators/Authors contains: "Afchine, Armin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Cirrus clouds that form in the tropical tropopause layer(TTL) can play a key role in vertical transport through the uppertroposphere and lower stratosphere, which can significantly impact theradiative energy budget and stratospheric chemistry. However, the lack ofrealistic representation of natural ice cloud habits in microphysicalparameterizations can lead to uncertainties in cloud-related processes andcloud–climate feedbacks. The main goal of this study is to investigate therole of different cloud regimes and the associated ice habits in regulatingthe properties of the TTL. We compare aircraft measurements from theStratoClim field campaign to a set of numerical experiments at the scale of large-eddy simulations (LESs) for the same case study that employ differentmicrophysics schemes. Aircraft measurements over the southern slopes of theHimalayas captured high ice water content (HIWC) up to 2400 ppmv and iceparticle aggregates exceeding 700 µm in size with unusually longresidence times. The observed ice particles were mainly of liquid origin,with a small amount formed in situ. The corresponding profile of ice water content (IWC) fromthe ERA5 reanalysis corroborates the presence of HIWC detrained from deep-convective plumes in the TTL but underestimates HIWC by an order ofmagnitude. In the TTL, only the scheme that predicts ice habits canreproduce the observed HIWC, ice number concentration, and bimodal iceparticle size distribution. The lower range of particle sizes is mostlyrepresented by planar and columnar habits, while the upper range isdominated by aggregates. Large aggregates with sizes between 600 and 800 µm have fall speeds of less than 20 cm s−1, which explains thelong residence time of the aggregates in the TTL. Planar ice particles ofliquid origin contribute substantially to HIWC. The columnar and aggregatehabits are in the in situ range with lower IWC and number concentrations. Forall habits, the ice number concentration increases with decreasingtemperature. For the planar ice habit, relative humidity is inverselycorrelated with fall speed. This correlation is less evident for the othertwo ice habits. In the lower range of supersaturation with respect to ice,the columnar habit has the highest fall speed. The difference in ice numberconcentration across habits can be up to 4 orders of magnitude, withaggregates occurring in much smaller numbers. We demonstrate and quantifythe linear relationship between the differential sedimentation of pristineice crystals and the size of the aggregates that form when pristine crystalscollide. The slope of this relationship depends on which pristine ice habitsediments faster. Each simulated ice habit is associated with distinctradiative and latent heating rates. This study suggests that a modelconfiguration nested down to LES scales with a microphysicalparameterization that predicts ice shape evolution is crucial to provide anaccurate representation of the microphysical properties of TTL cirrus andthus the associated (de)hydration process. 
    more » « less
  2. Abstract. In situ measurements in the climatically important upper troposphere–lower stratosphere (UTLS) are critical for understanding controls on cloud formation, the entry of water into the stratosphere, and hydration–dehydration of the tropical tropopause layer.Accurate in situ measurement of water vapor in the UTLS however is difficult because of low water vapor concentrations (<5 ppmv) and a challenging low temperature–pressure environment.The StratoClim campaign out of Kathmandu, Nepal, in July and August 2017, which made the first high-altitude aircraft measurements in the Asian Summer Monsoon (ASM), also provided an opportunity to intercompare three in situ hygrometers mounted on the M-55 Geophysica: ChiWIS (Chicago Water Isotope Spectrometer), FISH (Fast In situ Stratospheric Hygrometer), and FLASH (Fluorescent Lyman-α Stratospheric Hygrometer).Instrument agreement was very good, suggesting no intrinsic technique-dependent biases: ChiWIS measures by mid-infrared laser absorption spectroscopy and FISH and FLASH by Lyman-α induced fluorescence.In clear-sky UTLS conditions (H2O<10 ppmv), mean and standard deviations of differences in paired observations between ChiWIS and FLASH were only (-1.4±5.9) % and those between FISH and FLASH only (-1.5±8.0) %.Agreement between ChiWIS and FLASH for in-cloud conditions is even tighter, at (+0.7±7.6) %.Estimated realized instrumental precision in UTLS conditions was 0.05, 0.2, and 0.1 ppmv for ChiWIS, FLASH, and FISH, respectively.This level of accuracy and precision allows the confident detection of fine-scale spatial structures in UTLS water vapor required for understanding the role of convection and the ASM in the stratospheric water vapor budget. 
    more » « less
  3. Abstract. The Asian monsoon anticyclone (AMA) represents one of thewettest regions in the lower stratosphere (LS) and is a key contributor tothe global annual maximum in LS water vapour. While the AMA wet pool islinked with persistent convection in the region and horizontal confinementof the anticyclone, there remain ambiguities regarding the role oftropopause-overshooting convection in maintaining the regional LS watervapour maximum. This study tackles this issue using a unique set ofobservations from aboard the high-altitude M55-Geophysica aircraft deployedin Nepal in summer 2017 within the EU StratoClim project. We use acombination of airborne measurements (water vapour, ice water, waterisotopes, cloud backscatter) together with ensemble trajectory modellingcoupled with satellite observations to characterize the processescontrolling water vapour and clouds in the confined lower stratosphere (CLS)of the AMA. Our analysis puts in evidence the dual role of overshootingconvection, which may lead to hydration or dehydration depending on thesynoptic-scale tropopause temperatures in the AMA. We show that all of theobserved CLS water vapour enhancements are traceable to convective eventswithin the AMA and furthermore bear an isotopic signature of the overshootingprocess. A surprising result is that the plumes of moist air with mixingratios nearly twice the background level can persist for weeks whilstrecirculating within the anticyclone, without being subject to irreversibledehydration through ice settling. Our findings highlight the importance ofconvection and recirculation within the AMA for the transport of water into thestratosphere. 
    more » « less