Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationThe Galaxy application is a popular open-source framework for data intensive sciences, counting thousands of monthly users across more than 100 public servers. To support a growing number of users and a greater variety of use cases, the complexity of a production-grade Galaxy installation has also grown, requiring more administration effort. There is a need for a rapid and reproducible Galaxy deployment method that can be maintained at high-availability with minimal maintenance. ResultsWe describe the Galaxy Helm chart that codifies all elements of a production-grade Galaxy installation into a single package. Deployable on Kubernetes clusters, the chart encapsulates supporting software services and implements the best-practices model for running Galaxy. It is also the most rapid method available for deploying a scalable, production-grade Galaxy instance on one’s own infrastructure. The chart is highly configurable, allowing systems administrators to swap dependent services if desired. Notable uses of the chart include on-demand, fully-automated deployments on AnVIL, providing training infrastructure for the Bioconductor project, and as the AWS-recommended solution for running Galaxy on the Amazon cloud. Availability and implementationThe source code for Galaxy Helm is available at https://github.com/galaxyproject/galaxy-helm, the corresponding Helm package at https://github.com/CloudVE/helm-charts, and the required Galaxy container image https://github.com/galaxyproject/galaxy-docker-k8s.more » « less
-
Jupyter Notebooks are an enormously popular tool for creating and narrating computational research projects. They also have enormous potential for creating reproducible scientific research artifacts. Capturing the complete state of a notebook has additional benefits; for instance, the notebook execution may be split between local and remote resources, where the latter may have more powerful processing capabilities or store large or access-limited data. There are several challenges for making notebooks fully reproducible when examined in detail. The notebook code must be replicated entirely, and the underlying Python runtime environments must be identical. More subtle problems arise in replicating referenced data, external library dependencies, and runtime variable states. This paper presents solutions to these problems using Juptyer’s standard extension mechanisms to create an archivable system state for a running notebook. We show that the overhead for these additional mechanisms, which involve interacting with the underlying Linux kernel, does not introduce substantial execution time overheads, demonstrating the approach’s feasibility.more » « less
-
Abstract Galaxy is a mature, browser accessible workbench for scientific computing. It enables scientists to share, analyze and visualize their own data, with minimal technical impediments. A thriving global community continues to use, maintain and contribute to the project, with support from multiple national infrastructure providers that enable freely accessible analysis and training services. The Galaxy Training Network supports free, self-directed, virtual training with >230 integrated tutorials. Project engagement metrics have continued to grow over the last 2 years, including source code contributions, publications, software packages wrapped as tools, registered users and their daily analysis jobs, and new independent specialized servers. Key Galaxy technical developments include an improved user interface for launching large-scale analyses with many files, interactive tools for exploratory data analysis, and a complete suite of machine learning tools. Important scientific developments enabled by Galaxy include Vertebrate Genome Project (VGP) assembly workflows and global SARS-CoV-2 collaborations.more » « less
An official website of the United States government
