Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Prescribed fires often have ecological benefits, but their environmental health risks have been infrequently studied. We investigated associations between residing near a prescribed fire, wildfire smoke exposure, and heart failure (HF) patients’ hospital utilization. Methods: We used electronic health records from January 2014 to December 2016 in a North Carolina hospital-based cohort to determine HF diagnoses, primary residence, and hospital utilization. Using a cross-sectional study design, we associated the prescribed fire occurrences within 1, 2, and 5 km of the patients’ primary residence with the number of hospital visits and 7- and 30-day readmissions. To compare prescribed fire associations with those observed for wildfire smoke, we also associated zip code-level smoke density data designed to capture wildfire smoke emissions with hospital utilization amongst HF patients. Quasi-Poisson regression models were used for the number of hospital visits, while zero-inflated Poisson regression models were used for readmissions. All models were adjusted for age, sex, race, and neighborhood socioeconomic status and included an offset for follow-up time. The results are the percent change and the 95% confidence interval (CI). Results: Associations between prescribed fire occurrences and hospital visits were generally null, with the few associations observed being with prescribed fires within 5 and 2 km of the primary residence in the negative direction but not the more restrictive 1 km radius. However, exposure to medium or heavy smoke (primarily from wildfires) at the zip code level was associated with both 7-day (8.5% increase; 95% CI = 1.5%, 16.0%) and 30-day readmissions (5.4%; 95% CI = 2.3%, 8.5%), and to a lesser degree, hospital visits (1.5%; 95% CI: 0.0%, 3.0%) matching previous studies. Conclusions: Area-level smoke exposure driven by wildfires is positively associated with hospital utilization but not proximity to prescribed fires.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Abstract The precise effect of oxide understoichiometry on bulk oxide catalytic properties continues to remain a subject of intense investigation. Of specific interest in this regard is the role of oxygen vacancies present on bulk ceria catalysts that have recently been reported to represent a more cost‐effective alternative to the more toxic and expensive catalysts used industrially for the selective hydrogenation of acetylene to ethylene. Contrasting claims as to the effect of surface reduction on hydrogenation rates exist in the open literature, with vacancy formation attributed, in separate studies, either a favorable or a deleterious role in effecting hydrogenation turnovers. We report here the non‐monotonic behavior of ethene hydrogenation rates that subsumes both of these trends as a function of degree of surface reduction over a sufficiently large range of pre‐reduction temperatures. Steady state transient kinetic and isotopic exchange data combined with in‐situ titration experiments suggest that this non‐monotonic trend can be attributed not to a change in either the kinetic relevance of specific elementary steps or the hydrogenation mechanism, but rather to site requirements that stipulate the need for two distinct, proximal sites. We also show that the sensitivity of hydrogenation rates to surface reduction can be altered by varying ceria surface termination, with the more open (110) and (100) surfaces exhibiting a less asymmetric effect of surface reduction on ethene hydrogenation rates.
-
Abstract Prescribed fire is the largest source of fine particulate matter emissions in the Southeastern United States, yet its air quality impacts remain highly uncertain. Here, we assess the influence of prescribed fire on observed pollutant concentrations in the region using a unique fire data set compiled from multiyear digital burn permit records. There is a significant association between prescribed fire activity and concentrations recorded at Southeastern monitoring sites, with permitted burning explaining as much as 50% variability in daily PM2.5concentrations. This relationship varies spatially and temporally across the region and as a function of burn type. At most locations, the association between PM2.5concentration and permitted burning is stronger than that with satellite‐derived burn area or meteorological drivers of air quality. These results highlight the value of bottom‐up data in evaluating the contribution of prescribed fire to regional air pollution and reveal a need to develop more complete burn records.