skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agarwal, Pankaj K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available January 15, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available December 1, 2025
  6. Free, publicly-accessible full text available December 15, 2025
  7. Free, publicly-accessible full text available December 1, 2025
  8. Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications in web search, recommendation systems, approximate query processing, etc. It computes a small, compact summary that preserves vital properties of the original data. In this paper, we study the data summarization problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any given k>0, that optimizes a certain objective. More specifically, we are interested in two commonly studied objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances between the summary items. A simple approach that computes the entire query output and then applies existing algorithms on top of these materialized tuples suffers from high computational complexity because the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be NO(1).We propose O(1)-approximation algorithms that compute well-representative summaries of size k in time O(N*kO(1)), or even O(N+ kO(1)) in some cases, without computing all result tuples. We also propose the first efficient (2+\eps)-approximation algorithm for the k-center clustering problem over relational data. Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with few invocations of these oracles. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  9. Free, publicly-accessible full text available September 1, 2025
  10. Finding patterns in graphs is a fundamental problem in databases and data mining. In many applications, graphs are temporal and evolve over time, so we are interested in finding durable patterns, such as triangles and paths, which persist over a long time. While there has been work on finding durable simple patterns, existing algorithms do not have provable guarantees and run in strictly super-linear time. The paper leverages the observation that many graphs arising in practice are naturally proximity graphs or can be approximated as such, where nodes are embedded as points in some high-dimensional space, and two nodes are connected by an edge if they are close to each other. We work with an implicit representation of the proximity graph, where nodes are additionally annotated by time intervals, and design near-linear-time algorithms for finding (approximately) durable patterns above a given durability threshold. We also consider an interactive setting where a client experiments with different durability thresholds in a sequence of queries; we show how to compute incremental changes to result patterns efficiently in time near-linear to the size of the changes. 
    more » « less