skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agrawal, Ankit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 5, 2026
  2. Free, publicly-accessible full text available May 17, 2026
  3. Free, publicly-accessible full text available December 18, 2025
  4. Free, publicly-accessible full text available December 18, 2025
  5. This study combines Graph Neural Networks (GNNs) and Large Language Models (LLMs) to improve material property predictions. By leveraging both embeddings, this hybrid approach achieves up to a 25% improvement over GNN-only model in accuracy. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  6. Free, publicly-accessible full text available December 18, 2025
  7. Free, publicly-accessible full text available December 18, 2025
  8. Abstract Recent progress in deep learning has significantly impacted materials science, leading to accelerated material discovery and innovation. ElemNet, a deep neural network model that predicts formation energy from elemental compositions, exemplifies the application of deep learning techniques in this field. However, the “black-box” nature of deep learning models often raises concerns about their interpretability and reliability. In this study, we propose XElemNet to explore the interpretability of ElemNet by applying a series of explainable artificial intelligence (XAI) techniques, focusing on post-hoc analysis and model transparency. The experiments with artificial binary datasets reveal ElemNet’s effectiveness in predicting convex hulls of element-pair systems across periodic table groups, indicating its capability to effectively discern elemental interactions in most cases. Additionally, feature importance analysis within ElemNet highlights alignment with chemical properties of elements such as reactivity and electronegativity. XElemNet provides insights into the strengths and limitations of ElemNet and offers a potential pathway for explaining other deep learning models in materials science. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  9. IntroductionReconstructing low-level particle tracks in neutrino physics can address some of the most fundamental questions about the universe. However, processing petabytes of raw data using deep learning techniques poses a challenging problem in the field of High Energy Physics (HEP). In the Exa.TrkX Project, an illustrative HEP application, preprocessed simulation data is fed into a state-of-art Graph Neural Network (GNN) model, accelerated by GPUs. However, limited GPU memory often leads to Out-of-Memory (OOM) exceptions during training, due to the large size of models and datasets. This problem is exacerbated when deploying models on High-Performance Computing (HPC) systems designed for large-scale applications. MethodsWe observe a high workload imbalance issue during GNN model training caused by the irregular sizes of input graph samples in HEP datasets, contributing to OOM exceptions. We aim to scale GNNs on HPC systems, by prioritizing workload balance in graph inputs while maintaining model accuracy. Our paper introduces diverse balancing strategies aimed at decreasing the maximum GPU memory footprint and avoiding the OOM exception, across various datasets. ResultsOur experiments showcase memory reduction of up to 32.14% compared to the baseline. We also demonstrate the proposed strategies can avoid OOM in application. Additionally, we create a distributed multi-GPU implementation using these samplers to demonstrate the scalability of these techniques on the HEP dataset. DiscussionBy assessing the performance of these strategies as data loading samplers across multiple datasets, we can gauge their effectiveness in both single-GPU and distributed environments. Our experiments, conducted on datasets of varying sizes and across multiple GPUs, broaden the applicability of our work to various GNN applications that handle input datasets with irregular graph sizes. 
    more » « less
  10. Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS system, we further show that it is applicable across a broader range of Cyber-Physical Systems. 
    more » « less