Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS systems, we further discuss its potential for use in other Cyber-Physical Systems. 
                        more » 
                        « less   
                    
                            
                            HIFuzz: Human Interaction Fuzzing for Small Unmanned Aerial Vehicles
                        
                    
    
            Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS system, we further show that it is applicable across a broader range of Cyber-Physical Systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931962
- PAR ID:
- 10520791
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1 to 14
- Subject(s) / Keyword(s):
- human-interaction, safety assurance, sUAS, Cyber-Physical Systems
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Flight-time failures of small Uncrewed Aerial Systems (sUAS) can have a severe impact on people or the environment. Therefore, sUAS applications must be thoroughly evaluated and tested to ensure their adherence to specified requirements, and safe behavior under real-world conditions, such as poor weather, wireless interference, and satellite failure. However, current simulation environments for autonomous vehicles, including sUAS, provide limited support for validating their behavior in diverse environmental contexts and moreover, lack a test harness to facilitate structured testing based on system-level requirements. We address these shortcomings by eliciting and specifying requirements for an sUAS testing and simulation platform, and developing and deploying it. The constructed platform, DroneWorld (\DW), allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment. The DroneWorld Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations. We report on two case studies in which we used our platform prior to real-world sUAS deployments, in order to evaluate sUAS mission behavior in various environmental contexts. Furthermore, we conducted a study with developers and found that DroneWorld simplifies the process of specifying requirements-driven test scenarios and analyzing acceptance test results.more » « less
- 
            Rapid advancements in Artificial Intelligence have shifted the focus from traditional human-directed robots to fully autonomous ones that do not require explicit human control. These are commonly referred to as Human-on-the-Loop (HotL) systems. Transparency of HotL systems necessitates clear explanations of autonomous behavior so that humans are aware of what is happening in the environment and can understand why robots behave in a certain way. However, in complex multi-robot environments, especially those in which the robots are autonomous and mobile, humans may struggle to maintain situational awareness. Presenting humans with rich explanations of autonomous behavior tends to overload them with lots of information and negatively affect their understanding of the situation. Therefore, explaining the autonomous behavior of multiple robots creates a design tension that demands careful investigation. This paper examines the User Interface (UI) design trade-offs associated with providing timely and detailed explanations of autonomous behavior for swarms of small Unmanned Aerial Systems (sUAS) or drones. We analyze the impact of UI design choices on human awareness of the situation. We conducted multiple user studies with both inexperienced and expert sUAS operators to present our design solution and initial guidelines for designing the HotL multi-sUAS interface.more » « less
- 
            In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences.more » « less
- 
            null (Ed.)With the rise of new AI technologies, autonomous systems are moving towards a paradigm in which increasing levels of responsibility are shifted from the human to the system, creating a transition from human-in-the-loop systems to human-on-the-loop (HoTL) systems. This has a significant impact on the safety analysis of such systems, as new types of errors occurring at the boundaries of human-machine interactions need to be taken into consideration. Traditional safety analysis typically focuses on system-level hazards with little focus on user-related or user-induced hazards that can cause critical system failures. To address this issue, we construct domain-level safety analysis assets for sUAS (small unmanned aerial systems) applications and describe the process we followed to explicitly, and systematically identify Human Interaction Points (HiPs), Hazard Factors and Mitigations from system hazards. We evaluate our approach by first investigating the extent to which recent sUAS incidents are covered by our hazard trees, and second by performing a study with six domain experts using our hazard trees to identify and document hazards for sUAS usage scenarios. Our study showed that our hazard trees provided effective coverage for a wide variety of sUAS application scenarios and were useful for stimulating safety thinking and helping users to identify and potentially mitigate human-interaction hazards.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    