Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

null (Ed.)On sharedmemory multicore machines, classic twoway recursive divideandconquer algorithms are implemented using common forkjoin based parallel programming paradigms such as Intel Cilk+ or OpenMP. However, in such parallel paradigms, the use of joins for synchronization may lead to artificial dependencies among function calls which are not implied by the underlying DP recurrence. These artificial dependencies can increase the span asymptotically and thus reduce parallelism. From a practical perspective, they can lead to resource underutilization, i.e., threads becoming idle. To eliminate such artificial dependencies, taskbased runtime systems and dataflow parallel paradigms, such as Concurrent Collections (CnC), PaRSEC, and Legion have been introduced. Such parallel paradigms and runtime systems overcome the limitations of forkjoin parallelism by specifying data dependencies at a finer granularity and allowing tasks to execute as soon as dependencies are satisfied.In this paper, we investigate how the performance of dataflow implementations of recursive divideandconquer based DP algorithms compare with forkjoin implementations. We have designed and implemented dataflow versions of DP algorithms in Intel CnC and compared the performance with forkjoin based implementations in OpenMP. Considering different execution parameters (e.g., algorithmic properties such as recursive base size as well as machine configuration such as the number of physical cores, etc),more »

Stencil computations are widely used to simulate the change of state of physical systems across a multidimensional grid over multiple timesteps. The stateoftheart techniques in this area fall into three groups: cacheaware tiled looping algorithms, cacheoblivious divideandconquer trapezoidal algorithms, and Krylov subspace methods. In this paper, we present two efficient parallel algorithms for performing linear stencil computations. Current direct solvers in this domain are computationally inefficient, and Krylov methods require manual labor and mathematical training. We solve these problems for linear stencils by using DFT preconditioning on a Krylov method to achieve a direct solver which is both fast and general. Indeed, while all currently available algorithms for solving general linear stencils perform Θ(NT) work, where N is the size of the spatial grid and T is the number of timesteps, our algorithms perform o(NT) work. To the best of our knowledge, we give the first algorithms that use fast Fourier transforms to compute final grid data by evolving the initial data for many timesteps at once. Our algorithms handle both periodic and aperiodic boundary conditions, and achieve polynomially better performance bounds (i.e., computational complexity and parallel runtime) than all other existing solutions. Initial experimental results show that implementations ofmore »

The binaryforking model is a parallel computation model, formally defined by Blelloch et al., in which a thread can fork a concurrent child thread, recursively and asynchronously. The model incurs a cost of Theta(log n) to spawn or synchronize n tasks or threads. The binaryforking model realistically captures the performance of parallel algorithms implemented using modern multithreaded programming languages on multicore sharedmemory machines. In contrast, the widely studied theoretical PRAM model does not consider the cost of spawning and synchronizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM model may not be optimal in the binaryforking model. Often, algorithms need to be redesigned to achieve optimal performance bounds in the binaryforking model and the nonconstant synchronization cost makes the task challenging. In this paper, we show that in the binaryforking model we can achieve optimal or nearoptimal span with negligible or no asymptotic blowup in work for comparisonbased sorting, Strassen's matrix multiplication (MM), and the Fast Fourier Transform (FFT). Our major results are as follows: (1) A randomized comparisonbased sorting algorithm with optimal O(log n) span and O(nlog n) work, both w.h.p. in n. (2) An optimal O(log n) span algorithm for Strassen's matrix multiplicationmore »

The binaryforking model is a parallel computation model, formally defined by Blelloch et al., in which a thread can fork a concurrent child thread, recursively and asynchronously. The model incurs a cost of Theta(log n) to spawn or synchronize n tasks or threads. The binaryforking model realistically captures the performance of parallel algorithms implemented using modern multithreaded programming languages on multicore sharedmemory machines. In contrast, the widely studied theoretical PRAM model does not consider the cost of spawning and synchronizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM model may not be optimal in the binaryforking model. Often, algorithms need to be redesigned to achieve optimal performance bounds in the binaryforking model and the nonconstant synchronization cost makes the task challenging. In this paper, we show that in the binaryforking model we can achieve optimal or nearoptimal span with negligible or no asymptotic blowup in work for comparisonbased sorting, Strassen's matrix multiplication (MM), and the Fast Fourier Transform (FFT). Our major results are as follows: (1) A randomized comparisonbased sorting algorithm with optimal O(log n) span and O(nlog n) work, both w.h.p. in n. (2) An optimal O(log n) span algorithm for Strassen's matrix multiplicationmore »

We present a novel framework to automatically derive highly efficient parametric multiway recursive divide&conquer algorithms for a class of dynamic programming (DP) problems. Standard twoway or any fixed Rway recursive divide&conquer algorithms may not fully exploit manycore processors. To run efficiently on a given machine, the value of R may need to be different for every level of recursion based on the number of processors available and the sizes of memory/caches at different levels of the memory hierarchy. The set of R values that work well on a given machine may not work efficiently on another machine with a different set of machine parameters. To improve portability and efficiency, Multiway Autogen generates parametric multiway recursive divide&conquer algorithms where the value of R can be changed on the fly for every level of recursion. We present experimental results demonstrating the performance and scalability of the parallel programs produced by our framework.