skip to main content

Search for: All records

Creators/Authors contains: "Ahuja, Ritesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. Mobile apps and location-based services generate large amounts of location data. Location density information from such datasets benefits research on traffic optimization, context-aware notifications and public health (e.g., disease spread). To preserve individual privacy, one must sanitize location data, which is commonly done using differential privacy (DP). Existing methods partition the data domain into bins, add noise to each bin and publish a noisy histogram of the data. However, such simplistic modelling choices fall short of accurately capturing the useful density information in spatial datasets and yield poor accuracy. We propose a machine-learning based approach for answering range count queries on location data with DP guarantees. We focus on countering the sources of error that plague existing approaches (i.e., noise and uniformity error) through learning, and we design a neural database system that models spatial data such that density features are preserved, even when DP-compliant noise is added. We also devise a framework for effective system parameter tuning on top of public data, which helps set important system parameters without expending scarce privacy budget. Extensive experimental results on real datasets with heterogeneous characteristics show that our proposed approach significantly outperforms the state of the art.
    Free, publicly-accessible full text available January 1, 2023
  3. Contact tracing is an essential public health tool for controlling epidemic disease outbreaks such as the COVID-19 pandemic. Digital contact tracing using real-time locations or proximity of individuals can be used to significantly speed up and scale up contact tracing. In this article, we present our project, REACT, for REAal-time Contact Tracing and risk monitoring via privacy-enhanced tracking of users' locations and symptoms. With privacy enhancement that allows users to control and refine the precision with which their information will be collected and used, REACT will enable: 1) contact tracing of individuals who are exposed to infected cases and identification of hot-spot locations, 2) individual risk monitoring based on the locations they visit and their contact with others; and 3) community risk monitoring and detection of early signals of community spread. We will briefly describe our ongoing work and the approaches we are taking as well as some challenges we encountered in deploying the app.
  4. The emergence of mobile apps (e.g., location-based services, geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches(e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse.We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central to our approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learningmore »with skip-grams. In addition, we devise data grouping techniques within the skip-gram framework that pool together trajectories from multiple users in order to accelerate learning and improve model accuracy. Experiments conducted on real datasets demonstrate that our approach significantly boosts prediction accuracy compared to existing DP-SGD techniques.« less
  5. The emergence of mobile apps (e.g., location-based services,geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches(e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse.We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central toour approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learning with skip-grams.more »In addition, we devise data grouping techniques within the skip-gram framework that pool together trajectories from multiple users in order to acceleratelearning and improve model accuracy. Experiments conducted on real datasets demonstrate that our approach significantly boosts prediction accuracy compared to existing DP-SGD techniques.« less