The emergence of mobile apps (e.g., location-based services,geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches(e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse.We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central toour approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learning with skip-grams.more »
Differentially-Private Next-Location Prediction with Neural Networks
The emergence of mobile apps (e.g., location-based services, geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limited expressivity (e.g., matrix factorization). More recent approaches(e.g., DP-SGD) integrate the powerful differential privacy model with neural networks, but they provide only generic and difficult-to-tune methods that do not perform well on location data, which is inherently skewed and sparse.We propose a technique that builds upon DP-SGD, but adapts it for the requirements of next-location prediction. We focus on user-level privacy, a strong privacy guarantee that protects users regardless of how much data they contribute. Central to our approach is the use of the skip-gram model, and its negative sampling technique. Our work is the first to propose differentially-private learning more »
- Award ID(s):
- 1910950
- Publication Date:
- NSF-PAR ID:
- 10192047
- Journal Name:
- Advances in database technology
- Page Range or eLocation-ID:
- 121-132
- ISSN:
- 2367-2005
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mobile apps and location-based services generate large amounts of location data. Location density information from such datasets benefits research on traffic optimization, context-aware notifications and public health (e.g., disease spread). To preserve individual privacy, one must sanitize location data, which is commonly done using differential privacy (DP). Existing methods partition the data domain into bins, add noise to each bin and publish a noisy histogram of the data. However, such simplistic modelling choices fall short of accurately capturing the useful density information in spatial datasets and yield poor accuracy. We propose a machine-learning based approach for answering range count queries on location data with DP guarantees. We focus on countering the sources of error that plague existing approaches (i.e., noise and uniformity error) through learning, and we design a neural database system that models spatial data such that density features are preserved, even when DP-compliant noise is added. We also devise a framework for effective system parameter tuning on top of public data, which helps set important system parameters without expending scarce privacy budget. Extensive experimental results on real datasets with heterogeneous characteristics show that our proposed approach significantly outperforms the state of the art.
-
Previous literature shows that deep learning is an effective tool to decode the motor intent from neural signals obtained from different parts of the nervous system. However, deep neural networks are often computationally complex and not feasible to work in real-time. Here we investigate different approaches' advantages and disadvantages to enhance the deep learning-based motor decoding paradigm's efficiency and inform its future implementation in real-time. Our data are recorded from the amputee's residual peripheral nerves. While the primary analysis is offline, the nerve data is cut using a sliding window to create a “pseudo-online” dataset that resembles the conditions in a real-time paradigm. First, a comprehensive collection of feature extraction techniques is applied to reduce the input data dimensionality, which later helps substantially lower the motor decoder's complexity, making it feasible for translation to a real-time paradigm. Next, we investigate two different strategies for deploying deep learning models: a one-step (1S) approach when big input data are available and a two-step (2S) when input data are limited. This research predicts five individual finger movements and four combinations of the fingers. The 1S approach using a recurrent neural network (RNN) to concurrently predict all fingers' trajectories generally gives better prediction resultsmore »
-
Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.
-
Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.