skip to main content

Search for: All records

Creators/Authors contains: "Alaikbarpour, Maryam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is {\em monotone} if, for any pair of domain elements x and y such that x⪯y, p(x)≤p(y). To understand the sample complexity of this problem, we introduce a new property called \emph{bigness} over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/logn) for testing bigness of distributions on domains of size n. We then build on these lower bounds to give Ω(n/logn) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem. 
    more » « less