Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
As the number and severity of security incidents continue to increase, remediating vulnerabilities and weaknesses has become a daunting task due to the sheer number of known vulnerabilities. Different scoring systems have been developed to provide qualitative and quantitative assessments of the severity of common vulnerabilities and weaknesses, and guide the prioritization of vulnerability remediation. However, these scoring systems provide only generic rankings of common weaknesses, which do not consider the specific vulnerabilities that exist in each system. To address this limitation, and building on recent principled approaches to vulnerability scoring, we propose new common weakness scoring metrics that consider the findings of vulnerability scanners, including the number of instances of each vulnerability across a system, and enable system-specific rankings that can provide actionable intelligence to security administrators. We built a small testbed to evaluate the proposed metrics against an existing metric, and show that the results are consistent with our intuition.more » « less
-
Singh, S.K.; Roy, P.; Raman, B.; Nagabhushan, P. (Ed.)Fingerprint-based authentication has been successfully adopted in a wide range of applications, including law enforcement and immigration, due to its numerous advantages over traditional password-based authentication. However, despite the usability and accuracy of this technology, some significant concerns still exist, which can potentially hinder its further adoption. For instance, a subject’s fingerprint is permanently associated with an individual and, once stolen, cannot be replaced, thus compromising biometric-based authentication. To mitigate this concern, we propose a multi-factor authentication approach that integrates type 1 and type 3 authentication factors into a fingerprint-based personal identification number, or FingerPIN. To authenticate, a subject is required to present a sequence of fingerprints corresponding to the digits of the PIN, based on a predefined secret mapping between digits and fingers. We conduct a vulnerability analysis of the proposed scheme, and demonstrate that it is robust to the compromise of one or more of the subject’s fingerprints.more » « less