Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
CLI Documentation for Users an expanded CLI file options CLI Documentation for Users by @Kshemaahna in https://github.com/caltechlibrary/caltechdata_api/pull/66 Expanded CLI file options by @Kshemaahna and @tmorrell New Contributors @Kshemaahna made their first contribution in https://github.com/caltechlibrary/caltechdata_api/pull/66 Full Changelog: https://github.com/caltechlibrary/caltechdata_api/compare/v1.10.0...v1.10.1more » « less
-
TRISH (Tree-Ring Integrated System for Hydrology), a new web-based tool for reconstruction of water-balance variables from tree-ring proxies is described. The tool makes use of a mapping application, a global water balance model and R-based reconstruction software. Long time series of water balance variables can be reconstructed by regression or analog statistical methods from tree-ring data uploaded by the user or available in TRISH as previously uploaded public datasets. A predictand hydroclimatic time series averaged or summed over a river basin or arbitrary polygon can be generated interactively by clicking on the map. Control over reconstruction modeling includes optional lagging of predictors, transformation of predictand, and reduction of predictors by principal component analysis. Output includes displayed and downloadable graphics, statistics, and time series. The two-stage reconstruction approach in TRISH allows assessment of the strength of the hydroclimatic signal in individual chronologies in addition to providing a reconstruction based on the tree-ring network. TRISH facilitates the testing of sensitivity of reconstructions to modeling choices and allows a user to explore hydrologic reconstruction in ungauged basins. The R software for reconstruction is available for running offline in the RStudio development environment. TRISH is an open-science resource designed to be shared broadly across the Earth Science research community and to engage water resource management.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available July 9, 2026
-
Free, publicly-accessible full text available May 29, 2026
-
Free, publicly-accessible full text available May 13, 2026
-
Repository now has a full suite of automated tests. Outdated datacite43 files replaced with files from the current version of CaltechDATA. Migrated the repository to use a modern pyproject.toml and setup.cfg setup. Incorporated a workflow to update setup.cfg automatically when codemeta.json changes, via the codemeta2cff.yml GitHub Action. return_id option added to caltechdata_edit, which matched the behavior of caltechdata_write by returning the record id CLI supports a profile file with saved orcid and funding data, better orcid support, bug fixes, and many improvements to the validate function Example jupyter notebook addedmore » « less
-
Ocean temperatures have warmed in the fjords surrounding the Greenland Ice Sheet, causing increased melt along their ice fronts and rapid glacier retreat and contributing to rising global sea levels. However, there are many physical mechanisms that can mediate the glacier response to ocean warming and variability. Warm ocean waters can directly cause melt at horizontal and vertical ice interfaces or promote iceberg calving by weakening proglacial melange or undercutting the glacier front. Sermeq Kujalleq (also known as Jakobshavn Isbræ) is the largest and fastest glacier in Greenland and has undergone substantial retreat, which started in the late 1990s. In this study, we use an ensemble modeling approach to disentangle the dominant mechanisms that drive the retreat of Sermeq Kujalleq. Within this ensemble, we vary the sensitivity of three different glaciological parameters to ocean temperature: frontal melt, subshelf melt, and a calving-stress threshold. Comparing results to the observed retreat behavior from 1985 to 2018, we select a best-fitting simulation which reproduces the observed retreat well. In this simulation, the arrival of warm water at the front of Sermeq Kujalleq in the late 1990s led to enhanced rates of subshelf melt, triggering the disintegration of the floating ice tongue over a decade. The recession of the calving front into a substantially deeper bed trough around 2010 accelerated the calving-driven retreat, which continued nearly unabated despite local ocean cooling in 2016. An extended ensemble of simulations with varying calving thresholds shows evidence of hysteresis in the calving rate, which can only be inhibited by a substantial increase in the calving-stress threshold beyond the values suggested for the historical period. Our findings indicate that accurate simulation of rapid calving-driven glacier retreats requires more sophisticated models of iceberg mélange and calving evolution coupled to ice flow models.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 12, 2026
An official website of the United States government
