### Access Dataset and extensive metadata can be accessed and downloaded via: [https://arcticdata.io/data/10.18739/A2CZ32678/](https://arcticdata.io/data/10.18739/A2CZ32678/) ### Overview A limited understanding of how glacier-ocean interactions lead to iceberg calving and melting at the ice-ocean boundary contributes to uncertainty in predictions of sea level rise. Dense packs of icebergs and sea ice, known as ice mélange, occur in many fjords in Greenland and Antarctica. Observations suggest that ice mélange may directly affect iceberg calving by pressing against the glacier front and indirectly affect glacier melting by controlling where and when icebergs melt which can impact ocean circulation and ocean heat transport towards glaciers. However, the interactions between ice mélange, ocean circulation, and iceberg calving have not been systematically investigated due to the difficulty of conducting field work in Greenland fjords. In order to investigate the dynamics of ice mélange (and other floating granular materials) and to inform development of ice mélange models, we conducted a series of laboratory experiments using synthetic icebergs (plastic blocks) that were pushed down a tank by a synthetic glacier. This data set consists of force measurements on the glacier terminus and time-lapse photographs of the experiments that were used for visualizing motion.
more »
« less
This content will become publicly available on January 1, 2026
Disentangling the oceanic drivers behind the post-2000 retreat of Sermeq Kujalleq, Greenland (Jakobshavn Isbræ)
Ocean temperatures have warmed in the fjords surrounding the Greenland Ice Sheet, causing increased melt along their ice fronts and rapid glacier retreat and contributing to rising global sea levels. However, there are many physical mechanisms that can mediate the glacier response to ocean warming and variability. Warm ocean waters can directly cause melt at horizontal and vertical ice interfaces or promote iceberg calving by weakening proglacial melange or undercutting the glacier front. Sermeq Kujalleq (also known as Jakobshavn Isbræ) is the largest and fastest glacier in Greenland and has undergone substantial retreat, which started in the late 1990s. In this study, we use an ensemble modeling approach to disentangle the dominant mechanisms that drive the retreat of Sermeq Kujalleq. Within this ensemble, we vary the sensitivity of three different glaciological parameters to ocean temperature: frontal melt, subshelf melt, and a calving-stress threshold. Comparing results to the observed retreat behavior from 1985 to 2018, we select a best-fitting simulation which reproduces the observed retreat well. In this simulation, the arrival of warm water at the front of Sermeq Kujalleq in the late 1990s led to enhanced rates of subshelf melt, triggering the disintegration of the floating ice tongue over a decade. The recession of the calving front into a substantially deeper bed trough around 2010 accelerated the calving-driven retreat, which continued nearly unabated despite local ocean cooling in 2016. An extended ensemble of simulations with varying calving thresholds shows evidence of hysteresis in the calving rate, which can only be inhibited by a substantial increase in the calving-stress threshold beyond the values suggested for the historical period. Our findings indicate that accurate simulation of rapid calving-driven glacier retreats requires more sophisticated models of iceberg mélange and calving evolution coupled to ice flow models.
more »
« less
- Award ID(s):
- 2025692
- PAR ID:
- 10625257
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 1775 to 1788
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Changes in ocean temperature and salinity are expected to be an important determinant of the Greenland ice sheet's future sea level contribution. Yet, simulating the impact of these changes in continental-scale ice sheet models remains challenging due to the small scale of key physics, such as fjord circulation and plume dynamics, and poor understanding of critical processes, such as calving and submarine melting. Here we present the ocean forcing strategy for Greenland ice sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change Sixth Assessment Report. Beginning from global atmosphere–ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland ice sheet models, termed the “retreat” and “submarine melt” implementations. The retreat implementation parameterises glacier retreat as a function of projected subglacial discharge and ocean thermal forcing, is designed to be implementable by all ice sheet models and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios, respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly constrained parameterisations and, as such, further research on submarine melting, calving and fjord–shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland ice sheet models to be systematically and consistently forced by the ocean for the first time and should result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.more » « less
-
Abstract. The frontal flux balance of a medium-sized tidewater glacier in westernGreenland in the summer is assessed by quantifying the individual components(ice flux, retreat, calving, and submarine melting) through a combination ofdata and models. Ice flux and retreat are obtained from satellite data.Submarine melting is derived using a high-resolution ocean model informed bynear-ice observations, and calving is estimated using a record of calvingevents along the ice front. All terms exhibit large spatial variability alongthe ∼5 km wide ice front. It is found that submarine melting accountsfor much of the frontal ablation in small regions where two subglacialdischarge plumes emerge at the ice front. Away from the subglacial plumes,the estimated melting accounts for a small fraction of frontal ablation.Glacier-wide, these estimates suggest that mass loss is largely controlled bycalving. This result, however, is at odds with the limited presence oficebergs at this calving front – suggesting that melt rates in regionsoutside of the subglacial plumes may be underestimated. Finally, we arguethat localized melt incisions into the glacier front can be significantdrivers of calving. Our results suggest a complex interplay of melting andcalving marked by high spatial variability along the glacier front.more » « less
-
null (Ed.)Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing.more » « less
-
The largest uncertainty in future sea-level rise is loss of ice from the Greenland and Antarctic Ice Sheets. Ice shelves, freely floating platforms of ice that fringe the ice sheets, play a crucial role in restraining discharge of grounded ice into the ocean through buttressing. However, since the 1990s, several ice shelves have thinned, retreated, and collapsed. If this pattern continues, it could expose thick cliffs that become structurally unstable and collapse in a process called marine ice cliff instability (MICI). However, the feedbacks between calving, retreat, and other forcings are not well understood. Here we review observed modes of calving from ice shelves and marine-terminating glaciers, and their relation to environmental forces. We show that the primary driver of calving is long-term internal glaciological stress, but as ice shelves thin they may become more vulnerable to environmental forcing. This vulnerability—and the potential for MICI—comes from a combination of the distribution of preexisting flaws within the ice and regions where the stress is large enough to initiate fracture. Although significant progress has been made modeling these processes, theories must now be tested against a wide range of environmental and glaciological conditions in both modern and paleo conditions. ▪ Ice shelves, floating platforms of ice fed by ice sheets, shed mass in a near-instantaneous fashion through iceberg calving. ▪ Most ice shelves exhibit a stable cycle of calving front advance and retreat that is insensitive to small changes in environmental conditions. ▪ Some ice shelves have retreated or collapsed completely, and in the future this could expose thick cliffs that could become structurally unstable called ice cliff instability. ▪ The potential for ice shelf and ice cliff instability is controlled by the presence and evolution of flaws or fractures within the ice.more » « less
An official website of the United States government
