skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Allein, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We computationally investigate a method for spatiotemporally modulating a material's elastic properties, leveraging thermal dependence of elastic moduli, with the goal of inducing nonreciprocal propagation of acoustic waves. Acoustic wave propagation in an aluminum thin film subjected to spatiotemporal boundary heating from one side and constant cooling from the other side was simulated via the finite element method. Material property modulation patterns induced by the asymmetric boundary heating are found to be non-homogenous with depth. Despite these inhomogeneities, it will be shown that such thermoelasticity can still be used to achieve nonreciprocal acoustic wave propagation. 
    more » « less
  2. Abstract

    A major challenge for negative‐index acoustic metamaterials is increasing their operational frequency to the MHz range in water for applications such as biomedical ultrasound. Herein, a novel technology to realize acoustic metamaterials in water using microstructured silicon chips as unit cells that incorporate silicon nitride membranes and Helmholtz resonators with dimensions below 100 μm fabricated using clean‐room microfabrication technology is presented. The silicon chip unit‐cells are then assembled to form periodic structures that result in a negative‐index metamaterial. Finite‐element method (FEM) simulations of the metamaterial show a negative‐index branch in the dispersion relation in the 0.25–0.35 MHz range. The metamaterial is characterized experimentally using laser‐doppler vibrometry, showing opposite phase and group velocities, a signature of negative‐index materials, and is in close agreement with FEM simulations. The experimental measurements also show that the magnitude of phase and group velocities increase as the frequency increases within the negative‐index band, confirming the negative‐index behavior of the material. Acoustic indices from –1 to –5 are reached with respect to water in the 0.25–0.35 MHz range. The use of silicon technology microfabrication to produce acoustic metamaterials for operation in water opens a new road to reach frequencies relevant for biomedical ultrasound  applications.

     
    more » « less