skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature-controlled spatiotemporally modulated phononic crystal for achieving nonreciprocal acoustic wave propagation
We computationally investigate a method for spatiotemporally modulating a material's elastic properties, leveraging thermal dependence of elastic moduli, with the goal of inducing nonreciprocal propagation of acoustic waves. Acoustic wave propagation in an aluminum thin film subjected to spatiotemporal boundary heating from one side and constant cooling from the other side was simulated via the finite element method. Material property modulation patterns induced by the asymmetric boundary heating are found to be non-homogenous with depth. Despite these inhomogeneities, it will be shown that such thermoelasticity can still be used to achieve nonreciprocal acoustic wave propagation.  more » « less
Award ID(s):
1640860
PAR ID:
10353185
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
151
Issue:
6
ISSN:
0001-4966
Page Range / eLocation ID:
3669 to 3675
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The existing concepts of non-reciprocity in propagation of acoustic or elastic waves are based either on nonlinear effects, or on local circulation of linear elastic fluid that leads to red or blue Doppler shift, depending on the direction of sound wave. The same concepts exist for electromagnetic non-reciprocity, where external magnetic field may produce the effect similar to local rotation of the medium. These two concepts originate from two known methods of breaking a time-reversal symmetry (T-symmetry), that is necessary for observation of nonreciprocal wave propagation. Both concepts require additional electrical or mechanical devices to be installed with their own power sources. Here we propose to explore viscosity of fluid as a natural factor of the T-symmetry breaking through energy dissipation. We report experimental observation of the nonreciprocal transmission of ultrasound through a water-submerged phononic crystals consisting of several layers of aluminum rods arranged in a square lattice. While viscous losses break the T-symmetry, making the wave propagation thermodynamically irreversible, the transmission remains reciprocal if the scatterers are symmetrical. To generate different energy losses for opposite directions of propagation, the P-symmetry of the crystal is broken by using asymmetric scatterers. Due to asymmetry, two sound waves propagating in the opposite directions produce different distributions of velocity and pressure that leads to different local absorption. Dissipation of acoustic energy occurs mostly near the surface of the scatterers and it strongly depends on surface roughnesses. Using two phononic crystal with smooth and rough aluminum rods we demonstrate low (2-5 dB) and high (10-15 dB) level of non-reciprocity within a wide range of frequencies, 300-600 kHz. Experimental results are in agreement with numerical simulations based on the Navier-Stokes equation. This nonreciprocal linear device is very cheap, robust and does not require energy source. 
    more » « less
  2. Abstract Magnetoelastic coupling is considered as one of the most reliable method to induce nonreciprocity of propagation losses of microwave‐frequency surface acoustic waves (SAW) and other acoustic modes propagating in nonmagnetic‐ferromagnetic heterostructures. Here, it is demonstrated theoretically that magnetoelastic coupling can also induce phase nonreciprocity of SAW, which is necessary for the development of SAW circulators and other nonreciprocal solid‐state‐acoustic devices. In contrast to previous studies, induction of the phase nonreciprocity requires the coupling of SAW to a strongly nonreciprocal spin wave (SW), having the nonreciprocal splitting of the SW spectrum much larger than the strength of the magnetoelastic coupling, which, in turn, should be much larger than the geometric mean of the SW and SAW damping rates. In this case, the hybridized SAW in the spectral region between the magnetoelastic gaps demonstrate significant phase nonreciprocity, retaining, at the same time, propagation losses that are close to those of unhybridized SAW. Possible practical realization of nonreciprocal SAW phase shifters and SAW‐ring‐based circulators based on hybridized waves in acoustic crystal and synthetic antiferromagnetic heterostructures is discussed. 
    more » « less
  3. Abstract The ability to create linear systems that manifest broadband nonreciprocal wave propagation would provide for exquisite control over acoustic signals for electronic filtering in communication and noise control. Acoustic nonreciprocity has predominately been achieved by approaches that introduce nonlinear interaction, mean-flow biasing, smart skins, and spatio-temporal parametric modulation into the system. Each approach suffers from at least one of the following drawbacks: the introduction of modulation tones, narrow band filtering, and the interruption of mean flow in fluid acoustics. We now show that an acoustic media that is non-local and active provides a new means to break reciprocity in a linear fashion without these deleterious effects. We realize this media using a distributed network of interlaced subwavelength sensor–actuator pairs with unidirectional signal transport. We exploit this new design space to create a stable metamaterial with non-even dispersion relations and electronically tunable nonreciprocal behavior over a broad range of frequencies. 
    more » « less
  4. Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods. 
    more » « less
  5. Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method. 
    more » « less