skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allison, Linden_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wearable thermoelectric generators are a promising energy source for powering activity trackers and portable health monitors. However, known iterations of wearable generators have large form factors, contain expensive or toxic materials with low elemental abundance, and quickly reach thermal equilibrium with a human body, meaning that thermoelectric power can only be generated over a short period of wear. Here, an all‐fabric thermopile is created by vapor printing persistentlyp‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐Cl) onto commercial cotton and this thermopile is integrated into a specially designed, wearable band that generates thermovoltages >20 mV when worn on the hand. It is shown that the reactive vapor coating process creates mechanically rugged fabric thermopiles that yield notably high thermoelectric power factors at low temperature differentials, as compared to solution‐processed counterparts. Further, best practices for naturally integrating thermopiles into garments are described, which allow for significant temperature gradients to be maintained across the thermopile despite continuous wear. 
    more » « less