Abstract Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW m−1·K−2at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests are performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50 mm radius of curvature, the change in electrical resistance of the film is 23%. Using Bi2Te3solutions, the ability to print thermoelectric thin films with an aerosol jet printer is demonstrated, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.
more »
« less
A Wearable All‐Fabric Thermoelectric Generator
Abstract Wearable thermoelectric generators are a promising energy source for powering activity trackers and portable health monitors. However, known iterations of wearable generators have large form factors, contain expensive or toxic materials with low elemental abundance, and quickly reach thermal equilibrium with a human body, meaning that thermoelectric power can only be generated over a short period of wear. Here, an all‐fabric thermopile is created by vapor printing persistentlyp‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐Cl) onto commercial cotton and this thermopile is integrated into a specially designed, wearable band that generates thermovoltages >20 mV when worn on the hand. It is shown that the reactive vapor coating process creates mechanically rugged fabric thermopiles that yield notably high thermoelectric power factors at low temperature differentials, as compared to solution‐processed counterparts. Further, best practices for naturally integrating thermopiles into garments are described, which allow for significant temperature gradients to be maintained across the thermopile despite continuous wear.
more »
« less
- Award ID(s):
- 1807743
- PAR ID:
- 10460943
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 4
- Issue:
- 5
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wearable strain sensors for movement tracking are a promising paradigm to improve clinical care for patients with neurological or musculoskeletal conditions, with further applicability to athletic wear, virtual reality, and next‐generation game controllers. Clothing‐like wearable strain sensors can support these use cases, as the fabrics used for clothing are generally lightweight and breathable, and interface with the skin in a manner that is mechanically and thermally familiar. Herein, a fabric capacitive strain sensor is presented and integrated into everyday clothing to measure human motions. The sensor is made of thin layers of breathable fabrics and exhibits high strains (>90%), excellent cyclic stability (>5000 cycles), and high water vapor transmission rates (≈50 g/h m2), the latter of which allows for sweat evaporation, an essential parameter of comfort. The sensor's functionality is verified under conditions similar to those experienced on the surface of the human body (35°C and % relative humidity) and after washing with fabric detergent. In addition, the fabric sensor shows stable capacitance at excitation frequencies up to 1 MHz, facilitating its low‐cost implementation in the Arduino environment. Finally, as a proof of concept, multiple fabric sensors are seamlessly integrated with commercial activewear to collect movement data. With the prioritization of breathability (air permeability and water vapor transmission), the fabric sensor design presented herein paves the way for future comfortable, unobtrusive, and discrete sensory clothing.more » « less
-
Abstract Microelectronic thermoelectric generators are one potential solution to energizing energy autonomous electronics, such as internet-of-things sensors, that must carry their own power source. However, thermoelectric generators with the mm2footprint area necessary for on-chip integration made from high thermoelectric figure-of-merit materials have been unable to produce the voltage and power levels required to run Si electronics using common temperature differences. We present microelectronic thermoelectric generators using Si0.97Ge0.03, made by standard Si processing, with high voltage and power generation densities that are comparable to or better than generators using high figure-of-merit materials. These Si-based thermoelectric generators have <1 mm2areas and can energize off-the-shelf sensor integrated circuits using temperature differences ≤25 K near room temperature. These generators can be directly integrated with Si circuits and scaled up in area to generate voltages and powers competitive with existing thermoelectric technologies, but in what should be a far more cost-effective manner.more » « less
-
This work evaluates wearable thermoelectric (TE) devices consisting of nanocomposite thermoelectric materials, aluminum nitride ceramic headers, and a flexible and stretchable circuit board. These types of wearable systems are part of a broader effort to harvest thermal energy from the body and convert it into electrical energy to power wearable electronics. Thermoelectric generators are made of p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3. The nanocomposite thermoelectric materials investigated in this research address the two fundamental challenges for body heat harvesting. The first challenge is related to the unavailability of high zT n-type materials near the body temperature. The second challenge is related to the thermoelectric power factor. To improve the zT, one has to increase the power factor simultaneously while reducing the thermal conductivity. Our nanocomposites result in enhancement of the TE power factor along with the reduction of the thermal conductivity. The fundamental reason is a nanoscale effect that happens only when the energy distribution function of the carriers does not relax to that of the bulk material in the crystallites. Ten p-type and ten n-type nanocomposite ingots were synthesized and characterized in this research. All ingots were characterized versus their thermoelectric properties and they all showed similarly enhanced properties. Our nanocomposites, compared to commercial materials, have better zT and thermal resistivity by 40% and 75% for p-type, respectively, and 15% and 140% for n-type. Compared to the state-of-the-art materials, our nanocomposites produce significantly higher power due to their optimized properties for the body temperature.more » « less
-
Abstract Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small‐scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self‐healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2at a low‐temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D‐printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self‐sustainable electronics.more » « less
An official website of the United States government
