skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amezcua-Correa, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Photonic lanterns (PLs) are waveguide devices enabling high-throughput single-mode spectroscopy and high angular resolution. Aims.We aim to present the first on-sky demonstration of a PL operating in visible light, to measure its throughput and assess its potential for high-resolution spectroscopy of compact objects. Methods.We used the SCExAO instrument (a double-stage extreme adaptive optics system installed at the Subaru Telescope) and FIRST mid-resolution spectrograph (R 3000) to test the visible capabilities of the PL on internal source and on-sky observations. Results.The best averaged coupling efficiency over the PL field of view was measured at 51% ± 10%, with a peak at 80%. We also investigated the relationship between coupling efficiency and the Strehl ratio for a PL, comparing them with those of a single-mode fiber (SMF). Findings show that in the adaptive optics regime a PL offers a better coupling efficiency performance than an SMF, especially in the presence of low-spatial-frequency aberrations. We observed Ikiiki (αLeo –mR= 1.37) and ‘Aua (αOri –mR= −1.17) at a frame rate of 200 Hz. Under median seeing conditions (about 1 arcsec measured in theHband) and large tip or tilt residuals (over 20 mas), we estimated an average light coupling efficiency of 14.5% ± 7.4%, with a maximum of 42.8% at 680 nm. We were able to reconstruct both star’s spectra, containing various absorption lines. Conclusions.The successful demonstration of this device opens new possibilities in terms of high-throughput single-mode fiber-fed spectroscopy in the visible. The demonstrated on-sky coupling efficiency performance would not have been achievable with a single SMF injection setup under similar conditions, partly because the residual tip or tilt alone exceeded the field of view of a visible SMF (18 mas at 700 nm). This emphasizes the enhanced resilience of PL technology to such atmospheric disturbances. The additional capabilities in high angular resolution are also promising but still have to be demonstrated in a forthcoming investigation. 
    more » « less
  2. null (Ed.)
    Abstract Advancements in computational capabilities along with the possibility of accessing high power levels have stimulated a reconsideration of multimode fibers. Multimode fibers are nowadays intensely pursued in terms of addressing longstanding issues related to information bandwidth and implementing new classes of high-power laser sources. In addition, the multifaceted nature of this platform, arising from the complexity associated with hundreds and thousands of interacting modes, has provided a fertile ground for observing novel physical effects. However, this same complexity has introduced a formidable challenge in understanding these newly emerging physical phenomena. Here, we provide a comprehensive theory capable of explaining the distinct Cherenkov radiation lines produced during multimode soliton fission events taking place in nonlinear multimode optical fibers. Our analysis reveals that this broadband dispersive wave emission is a direct byproduct of the nonlinear merging of the constituent modes comprising the resulting multimode soliton entities, and is possible in both the normal and anomalous dispersive regions. These theoretical predictions are experimentally and numerically corroborated in both parabolic and step-index multimode silica waveguides. Effects arising from different soliton modal compositions can also be accounted for, using this model. At a more fundamental level, our results are expected to further facilitate our understanding of the underlying physics associated with these complex “many-body” nonlinear processes. 
    more » « less
  3. We report the first observation of Aharonov-Bohm-like topological suppression of optical tunneling in twisted multicore fibers. Experimental results show that this effect is insensitive to imperfections, nonlinearities and mode-mixing processes, in agreement with theoretical predictions. 
    more » « less