skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: General theory and observation of Cherenkov radiation induced by multimode solitons
Abstract Advancements in computational capabilities along with the possibility of accessing high power levels have stimulated a reconsideration of multimode fibers. Multimode fibers are nowadays intensely pursued in terms of addressing longstanding issues related to information bandwidth and implementing new classes of high-power laser sources. In addition, the multifaceted nature of this platform, arising from the complexity associated with hundreds and thousands of interacting modes, has provided a fertile ground for observing novel physical effects. However, this same complexity has introduced a formidable challenge in understanding these newly emerging physical phenomena. Here, we provide a comprehensive theory capable of explaining the distinct Cherenkov radiation lines produced during multimode soliton fission events taking place in nonlinear multimode optical fibers. Our analysis reveals that this broadband dispersive wave emission is a direct byproduct of the nonlinear merging of the constituent modes comprising the resulting multimode soliton entities, and is possible in both the normal and anomalous dispersive regions. These theoretical predictions are experimentally and numerically corroborated in both parabolic and step-index multimode silica waveguides. Effects arising from different soliton modal compositions can also be accounted for, using this model. At a more fundamental level, our results are expected to further facilitate our understanding of the underlying physics associated with these complex “many-body” nonlinear processes.  more » « less
Award ID(s):
1912742
NSF-PAR ID:
10282676
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Communications Physics
Volume:
4
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low propagation loss in high confinement waveguides is critical for chip‐based nonlinear photonics applications. Sophisticated fabrication processes which yield sub‐nm roughness are generally needed to reduce scattering points at the waveguide interfaces to achieve ultralow propagation loss. Here, ultralow propagation loss is shown by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 ± 4.4 million are experimentally demonstrated. Although the microresonators support ten transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record‐low threshold pump power of 73 µW for parametric oscillation is measured and a broadband, almost octave spanning single‐soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that can be applied to different material platforms to achieve and use ultrahigh‐Qmultimode microresonators.

     
    more » « less
  2. We theoretically and experimentally demonstrate that the processes of multimode soliton fission and dispersive wave generation in parabolic-index multimode fibers, are substantially altered when the rate of intermodal nonlinear interactions is progressively increased during propagation. 
    more » « less
  3. Abstract The ability to engineer the spatial wavefunction of photons has enabled a variety of quantum protocols for communication, sensing, and information processing. These protocols exploit the high dimensionality of structured light enabling the encoding of multiple bits of information in a single photon, the measurement of small physical parameters, and the achievement of unprecedented levels of security in schemes for cryptography. Unfortunately, the potential of structured light has been restrained to free-space platforms in which the spatial profile of photons is preserved. Here, we make an important step forward to using structured light for fiber optical communication. We introduce a classical encryption protocol in which the propagation of high-dimensional spatial modes in multimode fibers is used as a natural mechanism for encryption. This provides a secure communication channel for data transmission. The information encoded in spatial modes is retrieved using artificial neural networks, which are trained from the intensity distributions of experimentally detected spatial modes. Our on-fiber communication platform allows us to use single spatial modes for information encoding as well as the high-dimensional superposition modes for bit-by-bit and byte-by-byte encoding respectively. This protocol enables one to recover messages and images with almost perfect accuracy. Our classical smart protocol for high-dimensional encryption in optical fibers provides a platform that can be adapted to address increased per-photon information capacity at the quantum level, while maintaining the fidelity of information transfer. This is key for quantum technologies relying on structured fields of light, particularly those that are challenged by free-space propagation. 
    more » « less
  4. We experimentally demonstrate a pump-pulse-induced conversion of noise into solitons in multimode optical fibers. The process is based on the recently discovered phenomenon of soliton self-mode conversion, where a pump soliton in a higher-order spatial mode crafts another well-defined soliton, originating purely from noise, in a lower-order mode at a longer wavelength through intermodal Raman scattering. The lack of the need for any seed or cavity feedback demonstrates that soliton self-mode conversion is a fundamentally unavoidable, but nevertheless tailorable and hence useful, self-organizing nonlinear optical effect capable of turning noise into transform limited solitons.

     
    more » « less
  5. The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics. 
    more » « less