skip to main content

Search for: All records

Creators/Authors contains: "Ampel, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cybercrime was estimated to cost the global economy $945 billion in 2020. Increasingly, law enforcement agencies are using social network analysis (SNA) to identify key hackers from Dark Web hacker forums for targeted investigations. However, past approaches have primarily focused on analyzing key hackers at a single point in time and use a hacker’s structural features only. In this study, we propose a novel Hacker Evolution Identification Framework to identify how hackers evolve within hacker forums. The proposed framework has two novelties in its design. First, the framework captures features such as user statistics, node-level metrics, lexical measures, and post style, when representing each hacker with unsupervised graph embedding methods. Second, the framework incorporates mechanisms to align embedding spaces across multiple time-spells of data to facilitate analysis of how hackers evolve over time. Two experiments were conducted to assess the performance of prevailing graph embedding algorithms and nodal feature variations in the task of graph reconstruction in five timespells. Results of our experiments indicate that Text- Associated Deep-Walk (TADW) with all of the proposed nodal features outperforms methods without nodal features in terms of Mean Average Precision in each time-spell. We illustrate the potential practical utility of the proposed frameworkmore »with a case study on an English forum with 51,612 posts. The results produced by the framework in this case study identified key hackers posting piracy assets.« less