skip to main content

Search for: All records

Creators/Authors contains: "An, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change is closely monitored and numerous studies reports increasing air temperature and weather extremes across the globe. As a direct consequence of the increase of global temperature, the increased heat stress is becoming a global threat to public health. While most climate change and epidemiological studies focus on air temperature to explain the increasing risks, heat strain can be predicted using comprehensive indices such as Universal Thermal Climate Index (UTCI). The Asia–Pacific region is prone to thermal stress and the high population densities in the region impose high health risk. This study evaluated the air temperature and UTCI trends between 1990 and 2019 and found significant increasing trends for air temperature for the whole region while the increases of UTCI are not as pronounced and mainly found in the northern part of the region. These results indicate that even though air temperature is increasing, the risks of heat stress when assessed using UTCI may be alleviated by other factors. The associations between El Niño Southern Oscillation (ENSO) and heat stress was evaluated on a seasonal level and the strongest regional responses were found during December-January (DJF) and March–May (MAM).

    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available September 28, 2024
  4. Abstract In the Asia–Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990–2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June–August (JJA), and by precipitation frequency in December–February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March–May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Free, publicly-accessible full text available October 1, 2024
  6. Free, publicly-accessible full text available September 1, 2024
  7. We demonstrate that with an optimally tuned scheduling function, adiabatic quantum computing (AQC) can readily solve a quantum linear system problem (QLSP) with O (κ poly(log (κ ε))) runtime, where κ is the condition number, and ε is the target accuracy. This is near optimal with respect to both κ and ε, and is achieved without relying on complicated amplitude amplification procedures that are difficult to implement. Our method is applicable to general non-Hermitian matrices, and the cost as well as the number of qubits can be reduced when restricted to Hermitian matrices, and further to Hermitian positive definite matrices. The success of the time-optimal AQC implies that the quantum approximate optimization algorithm (QAOA) with an optimal control protocol can also achieve the same complexity in terms of the runtime. Numerical results indicate that QAOA can yield the lowest runtime compared to the time-optimal AQC, vanilla AQC, and the recently proposed randomization method. 
    more » « less