Abstract Combinatorial optimization problems on graphs have broad applications in science and engineering. The quantum approximate optimization algorithm (QAOA) is a method to solve these problems on a quantum computer by applying multiple rounds of variational circuits. However, there exist several challenges limiting the application of QAOA to real-world problems. In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve with the number of rounds for multiple problems on several arbitrary graphs. We also demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with predetermined weights. Our results are a step toward applying quantum algorithms to real-world problems.
more »
« less
Quantum Linear System Solver Based on Time-optimal Adiabatic Quantum Computing and Quantum Approximate Optimization Algorithm
We demonstrate that with an optimally tuned scheduling function, adiabatic quantum computing (AQC) can readily solve a quantum linear system problem (QLSP) with O (κ poly(log (κ ε))) runtime, where κ is the condition number, and ε is the target accuracy. This is near optimal with respect to both κ and ε, and is achieved without relying on complicated amplitude amplification procedures that are difficult to implement. Our method is applicable to general non-Hermitian matrices, and the cost as well as the number of qubits can be reduced when restricted to Hermitian matrices, and further to Hermitian positive definite matrices. The success of the time-optimal AQC implies that the quantum approximate optimization algorithm (QAOA) with an optimal control protocol can also achieve the same complexity in terms of the runtime. Numerical results indicate that QAOA can yield the lowest runtime compared to the time-optimal AQC, vanilla AQC, and the recently proposed randomization method.
more »
« less
- Award ID(s):
- 2016245
- PAR ID:
- 10424828
- Date Published:
- Journal Name:
- ACM Transactions on Quantum Computing
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2643-6809
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.more » « less
-
The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of p large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as 1 − C ( p ) ∼ 1 / p μ . We show that transfer of parameters between graphs, and interpolating angles for p + 1 given p are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem.more » « less
-
Abstract The quantum approximate optimization algorithm (QAOA) is an approach for near-term quantum computers to potentially demonstrate computational advantage in solving combinatorial optimization problems. However, the viability of the QAOA depends on how its performance and resource requirements scale with problem size and complexity for realistic hardware implementations. Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we estimate the number of measurements needed to sample the output of the idealized QAOA circuit with high probability. We show the number of measurements, and hence total time to solution, grows exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.more » « less
-
Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified.more » « less
An official website of the United States government

