Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tidal disruption events (TDEs) around supermassive black holes (SMBHs) are a potential laboratory to study super-Eddington accretion disks and sometimes result in powerful jets or outflows which may shine in the radio and sub-millimeter bands. In this work, we modeled the thermal synchrotron emission of jets by general relativistic radiation magneto-hydrodynamics (GRRMHD) simulations of a BH accretion disk/jet system which assumed the TDE resulted in a magnetized accretion disk around a BH accreting at ∼12–25 times the Eddington accretion rate. Through synthetic observations with the Next Generation Event Horizon Telescope (ngEHT) and an image reconstruction analysis, we demonstrate that TDE jets may provide compelling targets within the context of the models explored in this work. In particular, we found that jets launched by a SANE super-Eddington disk around a spin a*=0.9 reach the ngEHT detection threshold at large distances (up to 100 Mpc in this work). A two-temperature plasma in the jet or weaker jets, such as a spin a*=0 model, requires a much closer distance, as we demonstrate detection at 10 Mpc for limiting cases of a*=0,R=1 or a*=0.9,R=20. We also demonstrate that TDE jets may appear as superluminal sources if the BH is rapidly rotating and the jetmore »Free, publicly-accessible full text available December 1, 2023
-
ABSTRACT We present general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of super-Eddington accretion flows around supermassive black holes (SMBHs), which may apply to tidal disruption events (TDEs). We perform long duration ($t\ge 81,200\, GM/c^3$) simulations that achieve mass accretion rates ≳11 times the Eddington rate and produce thermal synchrotron spectra and images of their jets. Gas flowing beyond the funnel wall expands conically and drives a strong shock at the jet head while variable mass ejection and recollimation, along the jet axis, results in internal shocks and dissipation. Assuming the ion temperature (Ti) and electron temperature (Te) in the plasma are identical, the radio/submillimetre spectra peak at >100 GHz and the luminosity increases with BH spin, exceeding $\sim 10^{41} \, \rm {erg\, s^{-1}}$ in the brightest models. The emission is extremely sensitive to Ti/Te as some models show an order-of-magnitude decrease in the peak frequency and up to four orders-of-magnitude decline in their radio/submillimetre luminosity as Ti/Te approaches 20. Assuming a maximum VLBI baseline distance of 10 Gλ, 230 GHz images of Ti/Te = 1 models shows that the jet head may be bright enough for its motion to be captured with the EHT (ngEHT) at D ≲ 110 (180) Mpc at the 5σ significance level.more »
-
We explore the plasma matter content in the innermost accretion disk/jet in M87* as relevant for an enthusiastic search for the signatures of anti-matter in the next generation of the Event Horizon Telescope (ngEHT). We model the impact of non-zero positron-to-electron ratio using different emission models, including a constant electron to magnetic pressure (constant βe model) with a population of non-thermal electrons as well as an R-beta model populated with thermal electrons. In the former case, we pick a semi-analytic fit to the force-free region of a general relativistic magnetohydrodynamic (GRMHD) simulation, while in the latter case, we analyze the GRMHD simulations directly. In both cases, positrons are being added at the post-processing level. We generate polarized images and spectra for some of these models and find out that at the radio frequencies, both of the linear and the circular polarizations are enhanced with every pair added. On the contrary, we show that, at higher frequencies, a substantial positron fraction washes out the circular polarization. We report strong degeneracies between different emission models and the positron fraction, though our non-thermal models show more sensitivities to the pair fraction than the thermal models. We conclude that a large theoretical image librarymore »Free, publicly-accessible full text available February 1, 2024
-
We propose the tracing of the motion of a shearing hot spot near the Sgr A* source through a dynamical image reconstruction algorithm, StarWarps. Such a hot spot may form as the exhaust of magnetic reconnection in a current sheet near the black hole horizon. A hot spot that is ejected from the current sheet into an orbit in the accretion disk may shear and diffuse due to instabilities at its boundary during its orbit, resulting in a distinct signature. We subdivide the motion into two different phases: the first phase refers to the appearance of the hot spot modeled as a bright blob, followed by a subsequent shearing phase. We employ different observational array configurations, including EHT (2017, 2022) and the next-generation Event Horizon Telescope (ngEHTp1, ngEHT) arrays, with several new sites added, and make dynamical image reconstructions for each of them. Subsequently, we infer the hot spot angular image location in the first phase, followed by the axes ratio and the ellipse area in the second phase. We focus on the direct observability of the orbiting hot spot in the sub-mm wavelength. Our analysis demonstrates that for this particular simulation, the newly added dishes are better able tomore »Free, publicly-accessible full text available February 1, 2024
-
Abstract We report measurements of the gravitationally lensed secondary image—the first in an infinite series of so-called “photon rings”—around the supermassive black hole M87* via simultaneous modeling and imaging of the 2017 Event Horizon Telescope (EHT) observations. The inferred ring size remains constant across the seven days of the 2017 EHT observing campaign and is consistent with theoretical expectations, providing clear evidence that such measurements probe spacetime and a striking confirmation of the models underlying the first set of EHT results. The residual diffuse emission evolves on timescales comparable to one week. We are able to detect with high significance a southwestern extension consistent with that expected from the base of a jet that is rapidly rotating in the clockwise direction. This result adds further support to the identification of the jet in M87* with a black hole spin-driven outflow, launched via the Blandford–Znajek process. We present three revised estimates for the mass of M87* based on identifying the modeled thin ring component with the bright ringlike features seen in simulated images, one of which is only weakly sensitive to the astrophysics of the emission region. All three estimates agree with each other and previously reported values. Our strongest massmore »
-
ABSTRACT We present models of Galactic Centre emission in the vicinity of Sagittarius A* that use parametrizations of the electron temperature or energy density. These models include those inspired by two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations as well as jet-motivated prescriptions generalizing equipartition of particle and magnetic energies. From these models, we calculate spectra and images and classify them according to their distinct observational features. Some models produce morphological and spectral features, e.g. image sizes, the sub-mm bump, and low-frequency spectral slope compatible with observations. Models with spectra consistent with observations produce the most compact images, with the most prominent, asymmetric photon rings. Limb-brightened outflows are also visible in many models. Of all the models we consider, that which represents the current data the best is one in which electrons are relativistically hot when magnetic pressure is larger than the thermal pressure, but cold (i.e. negligibly contributing to the emission) otherwise. This work is part of a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in M87 and 3C 279.
-
Abstract Interpretation of resolved polarized images of black holes by the Event Horizon Telescope (EHT) requires predictions of the polarized emission observable by an Earth-based instrument for a particular model of the black hole accretion system. Such predictions are generated by general relativistic radiative transfer (GRRT) codes, which integrate the equations of polarized radiative transfer in curved spacetime. A selection of ray-tracing GRRT codes used within the EHT Collaboration is evaluated for accuracy and consistency in producing a selection of test images, demonstrating that the various methods and implementations of radiative transfer calculations are highly consistent. When imaging an analytic accretion model, we find that all codes produce images similar within a pixel-wise normalized mean squared error (NMSE) of 0.012 in the worst case. When imaging a snapshot from a cell-based magnetohydrodynamic simulation, we find all test images to be similar within NMSEs of 0.02, 0.04, 0.04, and 0.12 in Stokes I , Q , U , and V , respectively. We additionally find the values of several image metrics relevant to published EHT results to be in agreement to much better precision than measurement uncertainties.Free, publicly-accessible full text available June 1, 2024
-
Abstract We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μ as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μ as along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in themore »Free, publicly-accessible full text available February 1, 2024
-
Abstract The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 μ as resolution of the EHT. J1924–2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5–11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924–2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz. Linearly polarized intensity images of J1924–2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.
-
Abstract Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT’s ( u , v )-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing ( u , v )-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.