Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We consider a demand management problem in an energy community, in which several users obtain energy from an external organization such as an energy company and pay for the energy according to pre-specified prices that consist of a time-dependent price per unit of energy as well as a separate price for peak demand. Since users’ utilities are their private information, which they may not be willing to share, a mediator, known as the planner, is introduced to help optimize the overall satisfaction of the community (total utility minus total payments) by mechanism design. A mechanism consists of a message space, a tax/subsidy, and an allocation function for each user. Each user reports a message chosen from her own message space, then receives some amount of energy determined by the allocation function, and pays the tax specified by the tax function. A desirable mechanism induces a game, the Nash equilibria (NE), of which results in an allocation that coincides with the optimal allocation for the community. As a starting point, we design a mechanism for the energy community with desirable properties such as full implementation, strong budget balance and individual rationality for both users and the planner. We then modify this baseline mechanism for communities where message exchanges are allowed only within neighborhoods, and consequently, the tax/subsidy and allocation functions of each user are only determined by the messages from their neighbors. All of the desirable properties of the baseline mechanism are preserved in the distributed mechanism. Finally, we present a learning algorithm for the baseline mechanism, based on projected gradient descent, that is guaranteed to converge to the NE of the induced game.more » « less
-
We consider the problem of decentralized sequential active hypothesis testing (DSAHT), where two transmitting agents, each possessing a private message, are actively helping a third agent–and each other–to learn the message pair over a discrete memoryless multiple access channel (DM-MAC). The third agent (receiver) observes the noisy channel output, which is also available to the transmitting agents via noiseless feedback. We formulate this problem as a decentralized dynamic team, show that optimal transmission policies have a time-invariant domain, and characterize the solution through a dynamic program. Several alternative formulations are discussed involving time-homogenous cost functions and/or variable-length codes, resulting in solutions described through fixed-point, Bellman-type equations. Subsequently, we make connections with the problem of simplifying the multi-letter capacity expressions for the noiseless feedback capacity of the DM-MAC. We show that restricting attention to distributions induced by optimal transmission schemes for the DSAHT problem, without loss of optimality, transforms the capacity expression, so that it can be thought of as the average reward received by an appropriately defined stochastic dynamical system with time-invariant state space.more » « less