- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anastos, Michael (2)
-
Frieze, Alan (2)
-
Gao, jane (1)
-
Pegden, Wesley (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the Hamiltonicity of the following model of a random graph. Suppose that we partition $[n]$ into $$V_1,V_2,\ldots,V_k$$ and add edge $$\{x,y\}$$ to our graph with probability $$p$$ if there exists $$i$$ such that $$x,y\in V_i$$. Otherwise, we add the edge with probability $$q$$. We denote this model by $$\G(n, p,q)$$ and give tight results for Hamiltonicity, including a critical window analysis, under various conditions.more » « less
-
Anastos, Michael; Frieze, Alan; Pegden, Wesley (, The Electronic journal of combinatorics)Let Ωq denote the set of proper [q]-colorings of the random graph Gn,m,m=dn/2 and let Hq be the graph with vertex set Ωq and an edge {σ,τ} where σ,τ are mappings [n]→[q] iff h(σ,τ)=1. Here h(σ,τ) is the Hamming distance |{v∈[n]:σ(v)≠τ(v)}|. We show that w.h.p. Hq contains a single giant component containing almost all colorings in Ωq if d is sufficiently large and q≥cdlogd for a constant c>3/2.more » « less