skip to main content

Search for: All records

Creators/Authors contains: "Anderson, Elsa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The relationship between (a) the structure and composition of the landscape around an individual's home and (b) environmental perceptions and health outcomes has been well demonstrated (eg the value of vegetation cover to well‐being). Few studies, however, have examined how multiple landscape features (eg vegetation and water cover) relate to perceptions of multiple environmental problems (eg air or water quality) and whether those relationships hold over time. We utilized a long‐term dataset of geolocated telephone surveys in Baltimore, Maryland, to identify relationships between residents’ perceptions of environmental problems and nearby landcover. Residents of neighborhoods with more vegetation or located closer to water were less likely to perceive environmental problems. Water quality was one exception to this trend, in that people were more likely to perceive water‐quality problems when nearby water cover was greater. These trends endured over time, suggesting that these relationships are stable and therefore useful for informing policy aimed at minimizing perceived environmental problems.

    more » « less
  2. Diuk-Wasser, Maria (Ed.)
    Abstract Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011–2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28–35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but is positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios. 
    more » « less
  3. Tree Baltimore ( hired Davey Tree to conduct a census of all publicly owned trees and tree pits in the city of Baltimore. This census was completed by arborists in 2017-2018, documenting over 192,000 trees and potential tree sites that reflect the public component of Baltimore’s urban forest. Entries in this dataset include trees in parkways (street trees), mown areas of public parks (forest patches excluded), meridian trees, and vacant spaces for tree planting. Data is continuously updated and the current vintage can be found at 
    more » « less
  4. Abstract

    Tree canopy cover is a critical component of the urban environment that supports ecosystem services at multiple spatial and temporal scales. Increasing tree canopy across a matrix of public and private land is challenging. As such, municipalities often plant trees along streets in public rights‐of‐way where there are fewer barriers to establishment, and composition and biomass of street trees are inextricably linked to human decisions, management, and care. In this study, we investigated the contributions of street trees to the broader urban forest, inclusive of tree canopy distributed across both public and private parcels in Baltimore, MD, USA. We assess how species composition, biodiversity, and biomass of street trees specifically augment the urban forest at local and citywide scales. Furthermore, we evaluate how street tree contributions to the urban forest vary with social and demographic characteristics of local residential communities. Our analyses demonstrate that street trees significantly enhanced citywide metrics of the urban forests' richness and tree biomass, adding an average six unique species per site. However, street tree contributions did not ameliorate low tree canopy locations, and more street tree biomass was generally aligned with higher urban forest cover. Furthermore, species richness, abundance, and biomass added by street trees were all positively related to local household income and population density. Our results corroborate previous findings that wealthier urban neighborhoods often have greater tree abundance and canopy cover and, additionally, suggest that investment in municipally managed street trees may be reinforcing inequities in distribution and function of the urban forest. This suggests a need for greater attention to where and why street tree plantings occur, what species are selected, and how planted tree survival is maintained by and for residents in different neighborhoods.

    more » « less
  5. null (Ed.)