Located in the central protuberance region of the mitoribosome and mitospecific mL38 proteins display homology to PEBP (Phosphatidylethanolamine Binding Protein) proteins, a diverse family of proteins reported to bind anionic substrates/ligands and implicated in cellular signaling and differentiation pathways. In this study, we have performed a mutational analysis of the yeast mitoribosomal protein MrpL35/mL38 and demonstrate that mutation of the PEBP-invariant ligand binding residues Asp(D)232 and Arg(R)288 impacted MrpL35/mL38’s ability to support OXPHOS-based growth of the cell. Furthermore, our data indicate these residues exist in a functionally important charged microenvironment, which also includes Asp(D)167 of MrpL35/mL38 and Arg(R)127 of the neighboring Mrp7/bL27m protein. We report that mutation of each of these charged residues resulted in a strong reduction in OXPHOS complex levels that was not attributed to a corresponding inhibition of the mitochondrial translation process. Rather, our findings indicate that a disconnect exists in these mutants between the processes of mitochondrial protein translation and the events required to ensure the competency and/or availability of the newly synthesized proteins to assemble into OXPHOS enzymes. Based on our findings, we postulate that the PEBP-homology domain of MrpL35/mL38, together with its partner Mrp7/bL27m, form a key regulatory region of the mitoribosome.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Weis, Karsten (Ed.)Free, publicly-accessible full text available December 1, 2024
-
Abstract We present and analyze a set of three-dimensional, global, general relativistic radiation magnetohydrodynamic simulations of thin, radiation-pressure-dominated accretion disks surrounding a nonrotating, stellar-mass black hole. The simulations are initialized using the Shakura–Sunyaev model with a mass accretion rate of M ̇ = 3 L Edd / c 2 (corresponding to L = 0.17 L Edd ). Our previous work demonstrated that such disks are thermally unstable when accretion is driven by an α -viscosity. In the present work, we test the hypothesis that strong magnetic fields can both drive accretion through magnetorotational instability and restore stability to such disks. We test four initial magnetic field configurations: (1) a zero-net-flux case with a single, radially extended set of magnetic field loops (dipole), (2) a zero-net-flux case with two radially extended sets of magnetic field loops of opposite polarity stacked vertically (quadrupole), (3) a zero-net-flux case with multiple radially concentric rings of alternating polarity (multiloop), and (4) a net-flux, vertical magnetic field configuration (vertical). In all cases, the fields are initially weak, with a gas-to-magnetic pressure ratio ≳100. Based on the results of these simulations, we find that the dipole and multiloop configurations remain thermally unstable like their α -viscosity counterpart, in our case collapsing vertically on the local thermal timescale and never fully recovering. The vertical case, on the other hand, stabilizes and remains so for the duration of our tests (many thermal timescales). The quadrupole case is intermediate, showing signs of both stability and instability. The key stabilizing factor is the ability of specific field configurations to build up and sustain strong, P mag ≳ 0.5 P tot , toroidal fields near the midplane of the disk. We discuss the reasons why certain configurations are able to do this effectively and others are not. We then compare our stable simulations to the standard Shakura–Sunyaev disk.more » « less
-
Glick, Benjamin (Ed.)We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7’s mitospecific domain, and together they confer a competitive advantage for a cell’s ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.more » « less
-
null (Ed.)Abstract Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May–June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2–10.5) and black race (OR, 8.4; 95% CI, 2.7–27.4) were associated with SARS-CoV-2 seropositivity.more » « less