skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Anderson, Molly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. What are the roles and responsibilities of U.S. academia in global fora such as the United Nations Food Systems Summit? In an effort to be better global partners, the Inter-institutional Network for Food and Agricultural Sustainability (INFAS) accepted an invitation to participate in the UNFSS. INFAS then convened a debriefing for our members to hear from our colleagues about their experiences and any outcomes that may have emerged from the Food Systems Summit. The Food Systems Summit process was deeply flawed, resulting in confusion and power inequities, yet it stimulated coalition-building and reflection on how and why to participate in global food governance. 
    more » « less
  2. This dataset presents major and trace element and radiogenic isotopes geochemistry of glasses in mid-ocean ridge basalts, sampled along a chain of near-axis seamounts and volcanic ridges perpendicular to the East Pacific Rise. 
    more » « less
  3. null (Ed.)
  4. Abstract Volcanic seamount chains on the flanks of mid‐ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate withoutin situsampling and is further hampered by Ar40/Ar39dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast‐spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near‐bottom compressed high‐intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicleSentryare used to test the hypothesis that seamount volcanism is age‐progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass‐wasting and current activity, bathymetric relief andSentryvehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off‐axis for several million years. 
    more » « less