Abstract Upwelling and decompression of mantle plumes is the primary mechanism for large volumes of intraplate volcanism; however, many seamounts do not correlate spatially, temporally, or geochemically with plumes. One region of enigmatic volcanism in the ocean basins that is not clearly attributable to plume‐derived magmatism is the Geologist Seamounts and the wider South Hawaiian Seamount Province (∼19°N, 157°W). Here we present new bathymetric maps as well as40Ar/39Ar age determinations and major and trace element geochemistry for six remote‐operated vehicle recovered igneous rock samples (NOAA‐OER EX1504L3) and two dredged samples (KK840824‐02) from the Geologist Seamounts. The new ages indicate that volcanism was active from 90 to 87 Ma and 74 to 73 Ma, inferring that in conjunction with previous ages of ∼84 Ma, seamount emplacement initiated near the paleo Pacific‐Farallon spreading ridge and volcanism spanned at least ∼17 m.y. Geochemical analyses indicate that Geologist Seamount lava flows are highly alkalic and represent low‐degree partial mantle melts primarily formed from a mixture of melting within the garnet and spinel stability field. The ages and morphology inferred that the seamounts were likely not related to an extinct plume. Instead, we build upon previous models that local microblock formation corresponded to regional lithospheric extension. We propose that the microblock was bounded by the Molokai and short‐lived Kana Keoki fracture zones. Regional deformation and corresponding volcanism among the Geologist Seamounts associated with the microblock potentially occurred in pulses contemporaneous to independently constrained changes in Pacific Plate motion—indicating that major changes in plate vectors can generate intraplate volcanism.
more »
« less
Relative Timing of Off‐Axis Volcanism From Sediment Thickness Estimates on the 8°20’N Seamount Chain, East Pacific Rise
Abstract Volcanic seamount chains on the flanks of mid‐ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate withoutin situsampling and is further hampered by Ar40/Ar39dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast‐spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near‐bottom compressed high‐intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicleSentryare used to test the hypothesis that seamount volcanism is age‐progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass‐wasting and current activity, bathymetric relief andSentryvehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off‐axis for several million years.
more »
« less
- Award ID(s):
- 1754419
- PAR ID:
- 10444126
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin.more » « less
-
The Northwestern Hawaiian Ridge is an age-progressive volcanic chain sourced from the Hawaiian mantle plume. Proximal to the Northwestern Hawaiian Ridge are several clusters of smaller seamounts and ridges with limited age constraints and unknown geodynamic origins. This study presents new bathymetric data and 40Ar/39Ar age determinations from lava flow samples recovered by remotely operated vehicle (ROV) from two east–west-trending chains of seamounts that lie north of the Pūhāhonu and Mokumanamana volcanoes. The previously unexplored Naifeh Chain (28°48′N,167°48′W) and Plumeria Chain (25°36′N, 164°35′W) contain five volcanic structures each, including three guyots in the Naifeh Chain. New 40Ar/39Ar age determinations indicate that the Naifeh Chain formed ca. 88 Ma and the Plumeria Chain ca. 85 Ma. The Cretaceous ages, coupled with a perpendicular orientation of the seamounts relative to absolute Pacific plate motion at that time, eliminate either a Miocene Hawaiian volcanic arch or Cretaceous mantle-plume origin. The seamounts lie on oceanic crust that is modeled to be 10–15 Ma older than the corresponding seamounts. Here, two models are put forth to explain the origin of these enigmatic seamount chains as well as the similar nearby Mendelssohn Seamounts. (1) Diffuse lithospheric extension results in the formation of these seamounts until the initiation of the Kula-Pacific spreading center in the north at 84–79 Ma, which alleviates the tension. (2) Shear-driven upwelling of enriched mantle material beneath young oceanic lithosphere results in an age-progressive seamount track that is approximately perpendicular to the spreading ridge. Here we show that all sampled seamounts proximal to the Northwestern Hawaiian Ridge are intraplate in nature, but their formations can be attributed to both plume and plate processes.more » « less
-
Abstract The Hawaiian‐Emperor seamount chain in the Pacific Ocean has provided fundamental insights into hotspot generated intraplate volcanism and the long‐term strength of oceanic lithosphere. However, only a few seismic experiments to determine crustal and upper mantle structure have been carried out on the Hawaiian Ridge, and no deep imaging has ever been carried out along the Emperor seamounts. Here, we present the results of an active source seismic experiment using 29 Ocean‐Bottom Seismometers (OBS) carried out along a strike profile of the seamounts in the region of Jimmu and Suiko guyots. Joint reflection and refraction tomographic inversion of the OBS data show the upper crust is highly heterogeneous withPwave velocities <4–5 km s−1, which are attributed to extrusive lavas and clastics. In contrast, the lower crust is remarkably homogeneous with velocities of 6.5–7.2 km s−1, which we attribute to oceanic crust and mafic intrusions. Moho is identified by a strongPmParrival at offsets of 20–80 km, yielding depths of 13–16 km. The underlying mantle is generally homogeneous with velocities in the range 7.9–8.0 km s−1. The crust and mantle velocity structure has been verified by gravity modeling. While top of oceanic crust prior to volcano loading is not recognized as a seismic or gravity discontinuity, flexural modeling reveals a ∼5.0–5.5 km thick preexisting oceanic crust that is overlain by a ∼8 km thick volcanic edifice. Unlike at the Hawaiian Ridge, we find no evidence of magmatic underplating.more » « less
-
Abstract Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz.more » « less
An official website of the United States government
