skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Thomas E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider how to provide fast estimates of flow-level tail latency performance for very large scale data center networks. Network tail latency is often a crucial metric for cloud application performance that can be affected by a wide variety of factors, including network load, inter-rack traffic skew, traffic burstiness, flow size distributions, oversubscription, and topology asymmetry. Network simulators such as ns-3 and OMNeT++ can provide accurate answers, but are very hard to parallelize, taking hours or days to answer what if questions for a single configuration at even moderate scale. Recent work with MimicNet has shown how to use machine learning to improve simulation performance, but at a cost of including a long training step per configuration, and with assumptions about workload and topology uniformity that typically do not hold in practice. We address this gap by developing a set of techniques to provide fast performance estimates for large scale networks with general traffic matrices and topologies. A key step is to decompose the problem into a large number of parallel independent single-link simulations; we carefully combine these link-level simulations to produce accurate estimates of end-to-end flow level performance distributions for the entire network. Like MimicNet, we exploit symmetry where possible to gain additional speedups, but without relying on machine learning, so there is no training delay. On a large-scale net- work where ns-3 takes 11 to 27 hours to simulate five seconds of network behavior, our techniques run in one to two minutes with accuracy within 9% for tail flow completion times. 
    more » « less
  2. The adoption of low latency persistent memory modules (PMMs) upends the long-established model of remote storage for distributed file systems. Instead, by colocating computation with PMM storage, we can provide applications with much higher IO performance, sub-second application failover, and strong consistency. To demonstrate this, we built the Assise distributed file system, based on a persistent, replicated coherence protocol that manages client-local PMM as a linearizable and crash-recoverable cache between applications and slower (and possibly remote) storage. Assise maximizes locality for all file IO by carrying out IO on process-local, socket-local, and client-local PMM whenever possible. Assise minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes. We compare Assise to Ceph/BlueStore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for common cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22×, throughput up to 56×, fail-over time up to 103×, and scales up to 6× better than its counterparts, while providing stronger consistency semantics. 
    more » « less