skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Andreoni, Igor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The identification of extragalactic fast optical transients (eFOTs) as potential multimessenger sources is one of the main challenges in time-domain astronomy. However, recent developments have allowed for probes of rapidly evolving transients. With the increasing number of alert streams from optical time-domain surveys, the next paradigm is building technologies to rapidly identify the most interesting transients for follow-up. One effort to make this possible is the fitting of objects to a variety of eFOT light curve models such as kilonovae and γ-ray burst (GRB) afterglows. In this work, we describe a new framework designed to efficiently fit transients to light curve models and flag them for further follow-up. We describe the pipeline’s workflow and a handful of performance metrics, including the nominal sampling time for each model. We highlight as examples ZTF20abwysqy, the shortest long gamma-ray burst discovered to date, and ZTF21abotose, a core-collapse supernova initially identified as a potential kilonova candidate.

     
    more » « less
  2. Abstract

    The upcoming Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST) opens a new opportunity to rapidly survey the southern sky at optical wavelengths (i.e.,ugrizybands). In this study, we aim to test the possibility of using LSST observations to constrain the mass and velocity of different kilonova (KN) ejecta components from the observation of a combined set of light curves from afterglows ofγ-ray bursts and KNe. We used a sample of simulated light curves from the aforementioned events as they would have been seen during the LSST survey to study how the choice of observing strategies impacts the parameter estimation. We found that the design of observing strategy that is the best compromise between light-curve coverage, observed filters, and reliability of the fit involves a high number of visits with long-gap pairs of about 4 hr every two nights in the same or different filters. The features of the observing strategy will allow us to recognize the different stages of the evolution of the light curve and gather observations in at least three filters.

     
    more » « less
  3. Abstract

    Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M. The rest have an ejecta mass >2.4Mand a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations.

     
    more » « less
  4. Abstract

    We present optical, radio, and X-ray observations of a rapidly evolving transient SN2019wxt (PS19hgw), discovered during the search for an electromagnetic counterpart to the gravitational-wave (GW) trigger S191213g. Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, SN2019wxt remained an interesting transient due to its peculiar nature. The optical/near-infrared (NIR) light curve of SN2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently known ultrastripped supernovae (USSNe) candidates. This double-peaked structure suggests the presence of an extended envelope around the progenitor, best modeled with two components: (i) early-time shock-cooling emission and (ii) late-time radioactive56Ni decay. We constrain the ejecta mass of SN2019wxt atMej≈ 0.20M, which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed up SN2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼260 days. We detected no definitive counterparts at the location of SN2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93 × 10−17erg cm−2s−1and detect an excess radio emission from the region of SN2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host-galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of SN2019wxt in optical/NIR observations during EMGW follow-up observations highlight the need for dedicated early, multiband photometric observations to identify USSNe.

     
    more » « less
  5. Abstract

    SN 1987A was an unusual hydrogen-rich core-collapse supernova originating from a blue supergiant star. Similar blue supergiant explosions remain a small family of events, and are broadly characterized by their long rises to peak. The Zwicky Transient Facility Census of the Local Universe (CLU) experiment aims to construct a spectroscopically complete sample of transients occurring in galaxies from the CLU galaxy catalog. We identify 13 long-rising (>40 days) Type II supernovae from the volume-limited CLU experiment during a 3.5 yr period from 2018 June to 2021 December, approximately doubling the previously known number of these events. We present photometric and spectroscopic data of these 13 events, finding peakr-band absolute magnitudes ranging from −15.6 to −17.5 mag and the tentative detection of Baiilines in nine events. Using our CLU sample of events, we derive a long-rising Type II supernova rate of1.370.30+0.26×106Mpc−3yr−1, ≈1.4% of the total core-collapse supernova rate. This is the first volumetric rate of these events estimated from a large, systematic, volume-limited experiment.

     
    more » « less
  6. Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population. 
    more » « less
  7. Abstract

    The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12Mis unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Caii]λλ7291, 7324/[Oi]λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [Oi] luminosity (≲1039erg s−1) and derived oxygen mass (≈0.01M) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12M. The ejecta properties (Mej≲ 1MandEkin∼ 1050erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.

     
    more » « less
  8. Abstract: Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θ E  = 0.167″ and almost identical arrival times. The small θ E and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures. 
    more » « less
  9. Abstract

    The limiting temporal resolution of a time-domain survey in detecting transient behavior is set by the time between observations of the same sky area. We analyze the distribution of visit separations for a range of Vera C. Rubin Observatory cadence simulations. Simulations from families v1.5–v1.7.1 are strongly peaked at the 22 minute visit pair separation and provide effectively no constraint on temporal evolution within the night. This choice will necessarily prevent Rubin from discovering a wide range of astrophysical phenomena in time to trigger rapid follow-up. We present a science-agnostic metric to supplement detailed simulations of fast-evolving transients and variables and suggest potential approaches for improving the range of timescales explored.

     
    more » « less
  10. Abstract

    One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producingr-process elements. Simulations have shown that 0.01–0.1Mofr-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature ofr-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity ofr-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account forr-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on ther-process mass for these SNe. We also perform independent light curve fits to models without ther-process. We find that ther-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence ofr-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities ofr-process ejecta mass or indicate whether all collapsars are completely devoid ofr-process nucleosynthesis.

     
    more » « less