skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aniruddha Saha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The unprecedented success of deep neural networks in many applications has made these networks a prime target for adversarial exploitation. In this paper, we introduce a benchmark technique for detecting backdoor attacks (aka Trojan attacks) on deep convolutional neural networks (CNNs). We introduce the concept of Universal Litmus Patterns (ULPs), which enable one to reveal backdoor attacks by feeding these universal patterns to the network and analyzing the output (i.e., classifying the network as ‘clean’ or ‘corrupted’). This detection is fast because it requires only a few forward passes through a CNN. We demonstrate the effectiveness of ULPs for detecting backdoor attacks on thousands of networks with different architectures trained on four benchmark datasets, namely the German Traffic Sign Recognition Benchmark (GTSRB), MNIST, CIFAR10, and Tiny-ImageNet. 
    more » « less