Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We give a broad overview of the history of microwave superconductivity and explore the technological developments that have followed from the unique electrodynamic properties of superconductors. Their low loss properties enable resonators with high quality factors that can nevertheless handle extremely high current densities. This in turn enables superconducting particle accelerators, high-performance filters and analog electronics, including metamaterials, with extreme performance. The macroscopic quantum properties have enabled new generations of ultra-high-speed digital computing and extraordinarily sensitive detectors. The microscopic quantum properties have enabled large-scale quantum computers, which at their heart are essentially microwave-fueled quantum engines. We celebrate the rich history of microwave superconductivity and look to the promising future of this exciting branch of microwave technology.more » « less
-
Abstract Chiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2with surface normal fluid response. The microwave surface impedance of the UTe2crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2can be a new platform to study exotic topological excitations in higher dimension.more » « less
An official website of the United States government

Full Text Available