skip to main content

Search for: All records

Creators/Authors contains: "Antipova, Olga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Zinc influx and efflux events are essential for meiotic progression in oocytes of several mammalian and amphibian species, but it is less clear whether this evolutionary conservation of zinc signals is also important in late-stage germline development in invertebrates. Using quantitative, single cell elemental mapping methods, we find that Caenorhabditis elegans oocytes undergo significant stage-dependent fluctuations in total zinc content, rising by over sevenfold from Prophase I through the beginning of mitotic divisions in the embryo. Live imaging of the rapid cell cycle progression in C. elegans enables us to follow changes in labile zinc pools across meiosis and mitosis in single embryo. We find a dynamic increase in labile zinc prior to fertilization that then decreases from Anaphase II through pronuclear fusion and relocalizes to the eggshell. Disruption of these zinc fluxes blocks extrusion of the second polar body, leading to a range of mitotic defects. We conclude that spatial temporal zinc fluxes are necessary for meiotic progression in C. elegans and are a conserved feature of germ cell development in a broad cross section of metazoa.

  2. Abstract

    Nano‐ and picophytoplankton are a major component of open‐ocean ecosystems and one of the main plankton functional types in biogeochemical models, yet little is known about their trace metal contents. In cultures of the picoeukaryoteOstreococcus lucimarinus, iron limitation reduced iron quotas by 68%, a fraction of the plasticity known in diatoms. In contrast, a commonly co‐occurring cyanobacterium,Prochlorococcus, showed variable iron contents with iron availability in culture. Synchrotron X‐ray fluorescence was used to measure single‐cell metal (Mn, Fe, Co, Ni, Zn) quotas of autotrophic flagellates (1.4–16.8‐μm diameter) collected from four ocean regions. Iron quotas were tightly constrained and showed little response to iron availability, similar to culturedOstreococcus. Zinc quotas also did not vary with zinc availability but appeared to vary with phosphorus availability. These results suggest that macronutrient and metal availability may be equally important for controlling metal contents of small eukaryotic open‐ocean phytoplankton.

  3. Abstract

    Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genusPseudo‐nitzschiamaintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas.