Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Digital image correlation (DIC) is an increasingly popular and effective non-contact method for measuring full-field displacements and strains of deformable bodies under load. Current DIC methods applied to bodies undergoing large displacements and rotations require a large measurement area for both the reference (i.e., undeformed) image and the deformed images. This can limit the resulting resolution of the displacement and strain fields. To address this issue, we propose a two-stage dynamic DIC method capable of measuring displacements and strains under material convection with high resolution. During the first stage, the reference image is assembled from smaller, high-resolution images of the undeformed object obtained using a spatially-fixed or moving frame. Following capture, each sub-image is rigidly translated and rotated into its appropriate place, thereby producing a full, high-resolution image of the reference body. In stage two, images of the loaded and deformed body, again obtained using a small camera frame with high resolution, are aligned with matching regions of the undeformed composite image using BRISK feature detection before performing DIC.We demonstrate the method on a contact problem whereby an elastomeric roller travels along a rigid surface. In doing so, we obtain fine resolution measurements of the state of strain of the region of the roller sidewall in contact with the substrate, even as new material convects through the region of interest. We present these measurements as a series of images and videos capturing strain evolution as the roller transitions from static loads to a fully dynamic steady-state, documenting the effectiveness of the method.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The electrical resistance of metal-polymer conductive inks increases as they undergo cyclic loading, posing a major challenge to their reliability as interconnect materials for flexible electronic devices. To characterize an ink’s fatigue performance, extensive electro-mechanical testing is usually performed. Phenomenological models that can accurately predict the resistance increase with cyclic loading can save time and be useful in flexible conductor design against fatigue failure. One such model was recently developed for only one composite ink type. The model is based on experiments monitoring resistance under monotonic stretch data and multiple experiments measuring the rate of increase of the resistance under different strain amplitudes and mean strains. The current work examines whether such resistance rate model could be generalized to apply for more types of composite inks. Two composite inks with different binder material, metal flake sizes and shapes, and substrate material were experimentally tested under monotonic and cyclic loading. It was found that the two new inks are also more sensitive to strain amplitude than mean strain. The resistance rate model accurately predicts early/catastrophic failure (<1000 cycles) in all inks and conservatively estimates high fatigue life for low strain amplitudes. A protocol detailing the procedures for applying the resistance model to new inks is outlined.
-
Elastomeric rollers are important components in applications such as printing and roll-to-roll manufacturing. To gain insight into roller mechanics and provide a basis for further investigations into dynamic rolling problems where rolling instabilities and rolling friction arise, we employ a specially designed apparatus to obtain displacement and strain fields via digital image correlation (DIC) under applied loads.We test loading scenarios leading to impending slip of an elastomeric roller, mounted on a steel hub, and in contact with a glass (rigid) substrate. We first examine strain fields under normal loading and compare them with the closest analytical predictions. We also analyze the strain fields under normal and tangential loading for which limited analytical predictions exist. For each loading scenario, we discuss the displacement and strain fields of the roller sidewall and contact interface. We implement a conceptual string model to demonstrate how stick and slip zones develop within the contact area as well as how memory effects arise during cyclic loading. This memory effect is then verified experimentally using the DIC strain fields. Additionally, we demonstrate a means for identifying the stick zone area between the roller and substrate using the experimentally-obtained displacement fields. We believe the apparatus, and the ability to obtain experimental displacement and strain fields, will prove valuable in understanding roller mechanics and associated instabilities.more » « lessFree, publicly-accessible full text available April 1, 2025
-
Instabilities that develop at the contact interface of solid rollers or airless tires while in motion can lead to increased energy losses and reduced service life. This manuscript describes an instrument that can give better insight into the origin of such instabilities by monitoring both local and global roller mechanics. This is done by simultaneously obtaining force and displacement data from sensors as well as optical measurements and local deformation fields across two different planes, extracted from images taken by a high-speed camera. Multiple loading configurations are possible, ranging from static normal loading of the roller to free rolling and rolling with a propulsive or a braking torque. Instrument functions, elements, and design are presented in detail and its capabilities are demonstrated by obtaining measurements such as width of the contact interface under normal loading, strain fields of the roller sidewall and contact interface under normal loading, and the roller’s resistance to motion for free and forced rolling.more » « less
-
Abstract Flexible electronics often employ composite inks consisting of conductive flakes embedded in a polymer matrix to transmit electrical signal. Recently, localized necking was identified as a cause of a substantial increase in normalized resistance with applied strain thereby adversely impacting electrical performance. The current study explores two possible contributing factors for the formation of such localization—ink surface roughness and local variations in silver flake volume fraction. Uniaxial tension experiments of a DuPont 5025 type ink are used to inform a constitutive model implemented using finite element method on different substrates. Surface roughness was modeled by sinusoidal variation in ink height, whose amplitude and wavelength are informed by experimental laser profilometry scan data. Local flake fraction variations obtained from experimental measurements before applying any strain, were modeled as local variations in the elastic modulus according to an inverse rule of mixtures between the silver flake and acrylic binder material properties. The study identified that the ink height roughness is the most impactful contributor to the subsequent strain localization. The substrate elastic properties impact the number and magnitude of localization bands, with the stiffer substrate delocalizing strain and averting catastrophic crack formation seen with a more compliant substrate. The model incorporating surface roughness closely matches experimental measurements of local strain across different substrates. The study can inform designers of the adverse impact of ink surface roughness on localization and subsequent detrimental increase of the resistance.more » « less
-
Porous metals represent a class of materials where the interplay of ligament length, width, node structure, and local geometry/curvature offers a rich parameter space for the study of critical length scales on mechanical behavior. Colloidal crystal templating of three-dimensionally ordered macroporous (3DOM, i.e., inverse opal) tungsten provides a unique structure to investigate the mechanical behavior at small length scales across the brittle–ductile transition. Micropillar compression tests show failure at 50 MPa contact pressure at 30 °C, implying a ligament yield strength of approximately 6.1 GPa for a structure with 5% relative density. In situ SEM frustum indentation tests with in-plane strain maps perpendicular to loading indicate local compressive strains of approximately 2% at failure at 30 °C. Increased sustained contact pressure is observed at 225 °C, although large (20%) nonlocal strains appear at 125 °C. The elevated-temperature mechanical performance is limited by cracks that initiate on planes of greatest shear under the indenter.more » « less