Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a systematic search for tidal disruption events (TDEs) using radio data from the Variables and Slow Transients (VAST) Pilot Survey conducted using the Australian Square Kilometre Array Pathfinder. Historically, TDEs have been identified using observations at X-ray, optical, and ultraviolet wavelengths. After discovery, a few dozen TDEs have been shown to have radio counterparts through follow-up observations. With systematic time-domain radio surveys becoming available, we can now identify new TDEs in the radio regime. A population of radio-discovered TDEs has the potential to provide several key insights including an independent constraint on their volumetric rate. We conducted a search to select variable radio sources with a single prominent radio flare and a position consistent within 2σof the nucleus of a known galaxy. While TDEs were the primary target of our search, sources identified in this search may also be consistent with active galactic nuclei exhibiting unusual flux density changes at the timescales probed, uncharacteristically bright supernovae, or a population of gamma-ray bursts. We identify a sample of 12 radio-bright candidate TDEs. The timescales and luminosities range from ∼6 to 230 days and ∼1038to 1041erg s−1, respectively, consistent with models of radio emission from TDEs that launch relativistic jets. After calculating the detection efficiency of our search using a Monte Carlo simulation of TDEs, and assuming all 12 sources are jetted TDEs, we derive a volumetric rate for jetted TDEs of Gpc−3yr−1, consistent with previous empirically estimated rates.more » « less
-
Abstract The phenomenon of pulsar nulling, observed as the temporary inactivity of a pulsar, remains poorly understood both observationally and theoretically. Most observational studies that quantify nulling employ a variant of Ritchings algorithm, which can suffer significant biases for pulsars where the emission is weak. Using a more robust mixture model method, we study pulsar nulling in a sample of 22 recently discovered pulsars, for which we publish the nulling fractions for the first time. These data clearly demonstrate biases of the former approach and show how an otherwise nonnulling pulsar can be classified as having significant nulls. We show that the population-wide studies that find a positive correlation of nulling with pulsar period/characteristic age can similarly be biased because of the bias in estimating the nulling fraction. We use our probabilistic approach to find the evidence for periodicity in the nulls in a subset of three pulsars in our sample. In addition, we also provide improved timing parameters for 17 of the 22 pulsars that had no prior follow-up.more » « less
-
ABSTRACT Several sources of repeating coherent bursts of radio emission with periods of many minutes have now been reported in the literature. These ‘ultralong period’ (ULP) sources have no clear multiwavelength counterparts and challenge canonical pulsar emission models, leading to debate regarding their nature. In this work, we report the discovery of a bright, highly polarized burst of radio emission at low Galactic latitude as part of a wide-field survey for transient and variable radio sources. ASKAP J175534.9$$-$$252749.1 does not appear to repeat, with only a single intense two-minute $$\sim$$200-mJy burst detected from 60 h of observations. The burst morphology and polarization properties are comparable to those of classical pulsars but the duration is more than one hundred times longer, analogous to ULPs. Combined with the existing ULP population, this suggests that these sources have a strong Galactic latitude dependence and hints at an unexplored population of transient and variable radio sources in the thin disc of the Milky Way. The resemblance of this burst with both ULPs and pulsars calls for a unified coherent emission model for objects with spin periods from milliseconds to tens of minutes. However, whether or not these are all neutron stars or have the same underlying power source remains open for debate.more » « less
-
Abstract We report the discovery of a young, highly scattered pulsar in a search for highly circularly polarized radio sources as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients survey. In follow-up observations with the Parkes radio telescope, Murriyang, we identified PSR J1032−5804 and measured a period of 78.7 ms, a dispersion measure of 819 ± 4 pc cm−3, a rotation measure of −2000 ± 1 rad m−2, and a characteristic age of 34.6 kyr. We found a pulse scattering timescale at 3 GHz of ∼22 ms, implying a timescale at 1 GHz of ∼3845 ms, which is the third most scattered pulsar known and explains its nondetection in previous pulsar surveys. We discuss the identification of a possible pulsar wind nebula and supernova remnant in the pulsar’s local environment by analyzing the pulsar spectral energy distribution and the surrounding extended emission from multiwavelength images. Our result highlights the possibility of identifying extremely scattered pulsars from radio continuum images. Ongoing and future large-scale radio continuum surveys will offer us an unprecedented opportunity to find more extreme pulsars (e.g., highly scattered, highly intermittent, and highly accelerated), which will enhance our understanding of the characteristics of pulsars and the interstellar medium.more » « less
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « lessFree, publicly-accessible full text available April 7, 2026
-
Abstract Late-time (∼a year) radio follow-up of optically discovered tidal disruption events (TDEs) is increasingly resulting in detections at radio wavelengths, and there is growing evidence for this late-time radio activity to be common to the broad class of subrelativistic TDEs. Detailed studies of some of these TDEs at radio wavelengths are also challenging the existing models for radio emission. Using all-sky multiepoch data from the Australian Square Kilometre Array Pathfinder (ASKAP), taken as a part of the Rapid ASKAP Continuum Survey (RACS), we searched for radio counterparts to a sample of optically discovered TDEs. We detected late-time emission at RACS frequencies (742–1032 MHz) in five TDEs, reporting the independent discovery of radio emission from TDE AT 2019ahk and extending the time baseline out to almost 3000 days for some events. Overall, we find that at least of the population of optically discovered TDEs has detectable radio emission in the RACS survey, while also noting that the true fraction can be higher given the limited cadence (two epochs separated by ∼3 yr) of the survey. Finally, we project that the ongoing higher-cadence (∼2 months) ASKAP Variable and Slow Transients survey can detect ∼20 TDEs in its operational span (4 yr), given the current rate from optical surveys.more » « less
-
Abstract PINTis a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new frequentist framework withinPINTto characterize the single-pulsar noise processes present in pulsar timing data sets. This framework enables parameter estimation for both uncorrelated and correlated noise processes, as well as model comparison between different timing and noise models in a computationally inexpensive way. We demonstrate the efficacy of the new framework by applying it to simulated data sets as well as a real data set of PSR B1855+09. We also describe the new features implemented inPINTsince it was first described in the literature.more » « less
-
Abstract Pulsar timing array observations have found evidence for an isotropic gravitational-wave background with the Hellings–Downs angular correlations between pulsar pairs. This interpretation hinges on the measured shape of the angular correlations, which is predominantly quadrupolar under general relativity. Here we explore a more flexible parameterization: we expand the angular correlations into a sum of Legendre polynomials and use a Bayesian analysis to constrain their coefficients with the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). When including Legendre polynomials with multipolesℓ≥ 2, we only find a significant signal in the quadrupole with an amplitude consistent with general relativity and nonzero at the ∼95% confidence level and a Bayes factor of 200. When we include multipolesℓ≤ 1, the Bayes factor evidence for quadrupole correlations decreases by more than an order of magnitude due to evidence for a monopolar signal at approximately 4 nHz, which has also been noted in previous analyses of the NANOGrav 15 yr data. Further work needs to be done in order to better characterize the properties of this monopolar signal and its effect on the evidence for quadrupolar angular correlations.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract We present the detection of 661 known pulsars observed with the Australian SKA Pathfinder (ASKAP) telescope at 888 MHz as part of the Rapid ASKAP Continuum Survey (RACS). Detections were made through astrometric coincidence and we estimate the false alarm rate of our sample to be ∼0.5%. Using archival data at 400 and 1400 MHz, we estimate the power-law spectral indices for the pulsars in our sample and find that the mean spectral index is −1.78 ± 0.6. However, we also find that a single power law is inadequate for modeling all the observed spectra. With the addition of flux densities between 150 MHz and 3 GHz from various imaging surveys, we find that up to 40% of our sample show deviations from a simple power-law model. Using StokesVmeasurements from the RACS data, we measured the circular polarization fraction for 9% of our sample and find that the mean polarization fraction is ∼10% (consistent between detections and upper limits). Using the dispersion-measure-derived distance, we estimate the pseudo-luminosity of the pulsars and do not find any strong evidence for a correlation with the pulsars’ intrinsic properties.more » « less
-
Abstract During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network, the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star–black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (False Alarm Rate less than 1 yr−1) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing,Fritz, an instance ofSkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg2within the skymaps of the high-significance GW events, reaching a median depth ofg≈ 20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach,nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than −16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software,simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH events), along with our O4a follow-ups. Following Kasliwal et al., we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag day−1can peak at a magnitude brighter than −17.5 mag.more » « less
An official website of the United States government
