Abstract We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm −3 , and rotation measure (RM) of +456 rad m −2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523−7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ −3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond. Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds.
more »
« less
Discovery of a Young, Highly Scattered Pulsar PSR J1032-5804 with the Australian Square Kilometre Array Pathfinder
Abstract We report the discovery of a young, highly scattered pulsar in a search for highly circularly polarized radio sources as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients survey. In follow-up observations with the Parkes radio telescope, Murriyang, we identified PSR J1032−5804 and measured a period of 78.7 ms, a dispersion measure of 819 ± 4 pc cm−3, a rotation measure of −2000 ± 1 rad m−2, and a characteristic age of 34.6 kyr. We found a pulse scattering timescale at 3 GHz of ∼22 ms, implying a timescale at 1 GHz of ∼3845 ms, which is the third most scattered pulsar known and explains its nondetection in previous pulsar surveys. We discuss the identification of a possible pulsar wind nebula and supernova remnant in the pulsar’s local environment by analyzing the pulsar spectral energy distribution and the surrounding extended emission from multiwavelength images. Our result highlights the possibility of identifying extremely scattered pulsars from radio continuum images. Ongoing and future large-scale radio continuum surveys will offer us an unprecedented opportunity to find more extreme pulsars (e.g., highly scattered, highly intermittent, and highly accelerated), which will enhance our understanding of the characteristics of pulsars and the interstellar medium.
more »
« less
- PAR ID:
- 10487410
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 175
- Size(s):
- Article No. 175
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Galactic Center (GC), with its high density of massive stars, is a promising target for radio transient searches. In particular, the discovery and timing of a pulsar orbiting the central supermassive black hole (SMBH) of our galaxy will enable stringent strong-field tests of gravity and accurate measurements of SMBH properties. We performed multiepoch 4–8 GHz observations of the inner ≈15 pc of our galaxy using the Robert C. Byrd Green Bank Telescope in 2019 August–September. Our investigations constitute the most sensitive 4–8 GHz GC pulsar survey conducted to date, reaching down to a 6.1 GHz pseudo-luminosity threshold of ≈1 mJy kpc2for a pulse duty cycle of 2.5%. We searched our data in the Fourier domain for periodic signals incorporating a constant or linearly changing line-of-sight pulsar acceleration. We report the successful detection of the GC magnetar PSR J1745−2900 in our data. Our pulsar searches yielded a nondetection of novel periodic astrophysical emissions above a 6σdetection threshold in harmonic-summed power spectra. We reconcile our nondetection of GC pulsars with inadequate sensitivity to a likely GC pulsar population dominated by millisecond pulsars. Alternatively, close encounters with compact objects in the dense GC environment may scatter pulsars away from the GC. The dense central interstellar medium may also favorably produce magnetars over pulsars.more » « less
-
Abstract We report on contemporaneous optical observations at ≈10 ms timescales from the fast radio burst (FRB) 20180916B of two repeat bursts (FRB 20201023 and FRB 20220908) taken with the ‘Alopeke camera on the Gemini-North telescope. These repeats have radio fluences of 2.8 and 3.5 Jy ms, respectively, approximately in the lower 50th percentile for fluence from this repeating burst. The ‘Alopeke data reveal no significant optical detections at the FRB position and we place 3σupper limits to the optical fluences of <8.3 × 10−3and <7.7 × 10−3Jy ms after correcting for line-of-sight extinction. Together, these yield the most sensitive limits to the optical-to-radio fluence ratio of an FRB on these timescales withην< 3 × 10−3by roughly an order of magnitude. These measurements rule out progenitor models where FRB 20180916B has a similar fluence ratio to optical pulsars, such as the Crab pulsar, or where optical emission is produced as inverse-Compton radiation in a pulsar magnetosphere or young supernova remnant. Our ongoing program with ‘Alopeke on Gemini-North will continue to monitor repeating FRBs, including FRB 20180916B, to search for optical counterparts on millisecond timescales.more » « less
-
Abstract We present new discoveries and results from long-term timing of 72 pulsars discovered in the Pulsar Arecibo L -band Feed Array (PALFA) survey, including precise determination of astrometric and spin parameters, and flux density and scatter broadening measurements at 1.4 GHz. Notable discoveries include two young pulsars (characteristic ages ∼30 kyr) with no apparent supernova remnant associations, three mode-changing, 12 nulling and two intermittent pulsars. We detected eight glitches in five pulsars. Among them is PSR J1939+2609, an apparently old pulsar (characteristic age ∼1 Gy), and PSR J1954+2529, which likely belongs to a newly emerging class of binary pulsars. The latter is the only pulsar among the 72 that is clearly not isolated: a nonrecycled neutron star with a 931 ms spin period in an eccentric ( e = 0.114) wide ( P b = 82.7 days) orbit with a companion of undetermined nature having a minimum mass of ∼0.6 M ⊙ . Since operations at Arecibo ceased in 2020 August, we give a final tally of PALFA sky coverage, and compare its 207 pulsar discoveries to the known population. On average, they are 50% more distant than other Galactic plane radio pulsars; PALFA millisecond pulsars (MSPs) have twice the dispersion measure per unit spin period than the known population of MSP in the plane. The four intermittent pulsars discovered by PALFA more than double the population of such objects, which should help to improve our understanding of pulsar magnetosphere physics. The statistics for these, rotating radio transients, and nulling pulsars suggest that there are many more of these objects in the Galaxy than was previously thought.more » « less
-
Abstract I conducted a new search for dispersed radio pulses from the X-ray pulsar PSR J0537−6910 in the Large Magellanic Cloud (LMC) in a long (11.6 hr) archival 1.4 GHz Parkes search observation. I searched dispersion measures (DMs) between 0 and 10,000 pc cm−3and detected 49 pulses with a signal-to-noise ratio (S/N) greater than 7 at a wide range of DMs using the HEIMDALL and FETCH pulse detection and classification packages. All of the pulses were weak, with none having an S/N above 8.5. There was a significant excess of pulses observed in the DM range of the known pulsar population in the LMC, suggesting that these pulses may originate from LMC pulsars. Three repeat pulses, each having widths ≲1 ms, were detected in a single DM trial of 103.412 pc cm−3, which is in the LMC DM range. This is unlikely to occur by chance in a single DM trial in this search at the (marginally significant) 4.3σlevel. It remains unclear whether any of the detected pulses in the sample are from PSR J0537−6910 itself.more » « less
An official website of the United States government
