skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anwar, Fatima M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Environmentally-powered computer systems operate on renewable energy harvested from their environment, such as solar or wind, and stored in batteries. While harvesting environmental energy has long been necessary for small-scale embedded systems without access to external power sources, it is also increasingly important in designing sustainable larger-scale systems for edge applications. For sustained operations, such systems must consider not only the electrical energy but also the thermal energy available in the environment in their design and operation. Unfortunately, prior work generally ignores the impact of thermal effects, and instead implicitly assumes ideal temperatures. To address the problem, we develop a thermodynamic model that captures the interplay of elec- trical and thermal energy in environmentally-powered computer systems. The model captures the effect of environmental condi- tions, the system’s physical properties, and workload scheduling on performance. In evaluating our model, we distill the thermal effects that impact these systems using a small-scale prototype and a programmable incubator. We then leverage our model to show how considering these thermal effects in designing and operating environmentally-powered computer systems of varying scales can improve their energy-efficiency, performance, and availability. 
    more » « less