skip to main content


Search for: All records

Creators/Authors contains: "Apelian, Diran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available April 19, 2025
  3. Free, publicly-accessible full text available January 30, 2025
  4. Free, publicly-accessible full text available April 20, 2025
  5. Single-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy’s behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m1/2, which we attribute to a dynamic competition between screw and edge dislocations in controlling the plasticity at a crack tip. Whereas the glide and intersection of screw and mixed dislocations promotes strain hardening controlling uniform deformation, the coordinated slip of <111> edge dislocations with {110} and {112} glide planes prolongs nonuniform strain through formation of kink bands. These bands suppress strain hardening by reorienting microscale bands of the crystal along directions of higher resolved shear stress and continually nucleate to accommodate localized strain and distribute damage away from a crack tip.

     
    more » « less
    Free, publicly-accessible full text available April 11, 2025
  6. Abstract Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for the fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multifidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro-components and hence must be considered in the design process. 
    more » « less
  7. Refractory multi-principal element alloys exhibiting promising mechanical properties such as excellent strength retention at elevated temperatures have been attracting increasing attention. Although their inherent chemical complexity is considered a defining feature, a challenge arises in predicting local chemical ordering, particularly in grain boundary regions with an enhanced structural disorder. In this study, we use atomistic simulations of a large group of bicrystal models to sample a wide variety of interfacial sites (grain boundary) in NbMoTaW and explore emergent trends in interfacial segregation and the underlying structural and chemical driving factors. Sampling hundreds of bicrystals along the [001] symmetric tilt axis and analyzing more than one hundred and thirty thousand grain boundary sites with a variety of local atomic environments, we uncover segregation trends in NbMoTaW. While Nb is the dominant segregant, more notable are the segregation patterns that deviate from expected behavior and mark situations where local structural and chemical driving forces lead to interesting segregation events. For example, incomplete depletion of Ta in low-angle boundaries results from chemical pinning due to favorable local compositional environments associated with chemical short-range ordering. Finally, machine learning models capturing and comparing the structural and chemical features of interfacial sites are developed to weigh their relative importance and contributions to segregation tendency, revealing a significant increase in predictive capability when including local chemical information. Overall, this work, highlighting the complex interplay between the local grain boundary structure and chemical short-range ordering, suggests tunable segregation and chemical ordering by tailoring grain boundary structure in multi-principal element alloys. 
    more » « less
  8. Predicting the fracture behavior of macroscale components containing microscopic porosity relies on multiscale damage models which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made due to the prohibitive computational costs associated with explicitly modeling spatially varying microstructures in a macroscopic component. To address this challenge, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on latent map Gaussian processes (LMGPs). Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we construct a multi-fidelity LMGP to inversely estimate the damage parameters of an ROM as a function of microstructure and clustering level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. 
    more » « less