skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy
Single-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy’s behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m1/2, which we attribute to a dynamic competition between screw and edge dislocations in controlling the plasticity at a crack tip. Whereas the glide and intersection of screw and mixed dislocations promotes strain hardening controlling uniform deformation, the coordinated slip of <111> edge dislocations with {110} and {112} glide planes prolongs nonuniform strain through formation of kink bands. These bands suppress strain hardening by reorienting microscale bands of the crystal along directions of higher resolved shear stress and continually nucleate to accommodate localized strain and distribute damage away from a crack tip.  more » « less
Award ID(s):
2011967
PAR ID:
10507015
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
384
Issue:
6692
ISSN:
0036-8075
Page Range / eLocation ID:
178 to 184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent “high-entropy alloys (HEAs)” based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 10 7 BCC HEAs and identify over 10 6 possible ultra-strong high-T alloy compositions for future exploration. 
    more » « less
  2. Plasticity in body centered cubic (BCC) crystals is shown to be controlled by slow screw dislocation motion, owing to the thermally-activated process of kink pair nucleation and migration. Through three dimensional discrete dislocation dynamics simulations, this work unravels the mystery of how such slow screw dislocation behavior contributes to extremely rapid strain bursts in submicron BCC tungsten (W) pillars, which is typical of BCC metals. It is found that strain bursts are dominated by the motion of non-screw dislocations at low strain rate, but are more influenced by screw dislocations at high strain rate. The total, and partial strain burst magnitude due to screw dislocations alone, are found to exhibit rate dependence following a power law statistics with exponent of 0.65. Similar power law statistics are also obeyed for the standard deviation of the corresponding plastic strain rate. The role of screw dislocations is attributed to the changing nature of dislocation source operation at different strain rates. The corresponding spatial distribution of plastic deformation is also discussed based on the uniqueness of the simulation method in reproducing the distribution of slipped area and plastic strain with very high spatial resolution. 
    more » « less
  3. Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum. 
    more » « less
  4. Abstract The mechanical behavior and microstructural evolution of a BCC‐phase NbTaTiV refractory multi‐principal element alloy (RMPEA) is studied over a wide range of strain rates (10−3to 103s−1) and temperatures (room temperature to 850 °C). The mechanical property of present RMPEA shows less strain‐rate dependence and strong resistance to softening at high temperatures. Under high strain‐rate loading, the formation of thin type‐I twins is observed, which could lead to an increase in strain‐hardening rates. However, this hardening mechanism competes with adiabatic heating effects, resulting in the deterrence of strain‐hardening behaviors. In contrast, substantial strain‐hardening occurs at cryogenic temperatures due to the formation of twins, which act as stronger barriers to dislocation motion and interact with each other. To further understand the different strain‐hardening behaviors, density functional theory (DFT) calculations predict relatively low stacking fault energies and high twinning stress for the NbTaTiV RMPEA. 
    more » « less
  5. Abstract Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength. 
    more » « less